o . q ﬂ\ [
. h]
w'vl \

Ly oL

AVF Control Number: AVF-VSR-338.0290
89-08-15-HPC

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 891019V1.10178
Hewvlett Packard Company
HP 9000 Series 800 Ada Compiler, Version 4.35
HP 9000 Series 8C0 Model 850

Completion of On-Site Testing:
19 October 1989

AD-A221 652

Prepared By:
Ada Validation Facility
ASD/SCOL
Vright-Patterson AFB 0H 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Vashington DC 20301-3081

PTIC
ELECTE
MAY 17 1990

i S d ME——

OFFICE OF THE DIRECTOR OF
DEFENSE RESEARCH AND ENGINEERING |

| S N -
RGeS WASHINGTON oc 20301 i N

o ‘MBMORANDUM FOR Dlrector, Directorate of ' Darabase Serv1ces, i
Towias , Defense Logistics Agency NG

SUBJECT: Technology 5cre§2;ﬁ§f;} Unclassified/Unlimited Reports

Feb />

Your letter of 2 February 1990 to the Commander, Air Force q;z
w. Systems Command, Air _.Force Aeronautical Laboratory,
- Wright-Patterson Air Force Base stated that the Ada Validation é;%
--- Summary report for Meridian Software Systems, Inc. contained -
technical data that should be denied publlc disclosure according to
.DoD Directive 5230.25 T U

-'1f3&g; - - " 'We do not agree with this opinion that the contents of this. [’
<--+ ~..particular Ada Validation Summary Report or the contents of the -:
-+ -% several hundred of such reports produced each year to document the 7]
"= conformity testing results of Ada compilers. Ada is not ‘used - -

~.exclusively for military applications. The language is an ANSI

Military Standard, a Federzl Information Processing Standard, and
an Interpnational Standards Organization standard. Compilers are
tested for conformity to the standard as the.basis for obtaining an

. Ada Joint Program Office certificate ¢f conformity. The results of

.7 “this testing are documented in a standard form in all - Ada .
- .Validation Summary Reports which the compiler vendor agrees to make - -
//publlc as part ¢f his contract with the testing facility.

PR . 'On 18 December 1985 the Commerce Department issued Part/(/
379 Technical Data of the Export Administration speczflcal\;
listing Ada Programming Support Environments (including compilers)”
as items controlled by the Commerce Department. The AJPO complies
with Department of Commerce export control .regulations. When
Defense Technical Information Center receives an Ada Validation

- —- --Summary Report, which-may be produced by any of the five U.S. and -

" European Ada Validation Facilities, the c¢ontent should be made .
~available to the public. T ' SE

If you have any further questions, please feel free to contgct.
the undersigned at (202) 694-0209.

“~" John P. Solomond

Director
Ada Joint Program Office

: i‘ﬁ‘———-'-.-llllIIl-

F.o2

, MAY 1S 94 11:29 TIT F.'ES;FOF‘E'H hHeT
UNCLASSIFIED
GECUP Ty CLASSIIILATION OF Twi§ PALL (WheaDora Entered
WL AD ETRCTIONS

REPORT DDCUN{NTA’ION PAGE BIIOsT TOVE L31°%2 FORY

1. REFORT Bywi(R {2, 6OvY ALCESSION %0 J3. RLLIPIEM)'S CATALO0 Bumsit
5. TVei OF REPORY § PERJOD COVERED
19 Oct. 1989 to 19 Oct. 1990

7 TNl eroSubiine)
Ads Cormpiler Validation Summary Reportineulett
§ o LA ORRINE BAC. WLPORT WLn

Packard Company, HP 9000 Series 800 Ada Compiler, Version
4.35 HP 9000 Series 800 Model 850 (Host & Target), 891019W
1. THORG) 8. CONTRALT QR GRANT MUME(R))
Wright=Patterson AFB
Dsyton, OH, USA
2 wdN 1G. PROGRAS BLEmMINY, PACMIT, 1A
0. PLATORMIRS ORLANIZATION AND ADORLSS “‘2 8 w0t DT e b L

Wright-Patterson AFR
Dayton, OH, USA
12. REPORY DAt

31, COMTRD.LING OFFILE WawD AND ADOR{SS
hda Joint %rogum O?t‘?ce
arteent of Defense il}mwl,u

United States De
wWashington, DC 23301-3081
14, BCRITOR RS AGENCY BAML B ADDRIBS(/f @erent from Cuntroliing Dfce) 16, SECURITY CLASS (oftharepom)
UNCLASSIFIED
158. !&Esaﬁ'unlob-'boc\:.n:m

N/A

Wright-Patterson AFL
Dayton, OH, USA

16. DISIRIBITION STATEMINY (of ths Report)
Approved for public release; distribution unlimited.

1. DISTRIS.TION S8 (w8 (oltnc adiacente e 3 mB Xk 20 Mo Meren: hpm Repom)

URCLASSIFIED

8. PP EwInalY KETES

10, BIYUORDS (Contnve on roverse s f mecessen) ond dentfy 8y block ngmber)

ing language, Ada Compiler Validation Sumrary Repart, Ada

¢ ACVC, Validation Testing, Ada
ANSI/MIL-STD-

Ads Prograss
Corpiler Validation Capability
Validation Facility, AVF,

Validation Office, AVO, Ada
1815A, Ada Joint Program Office, AJPOD

20. ABSIRALT (Continye oA rpvpr3e S0 " reessery ono wie nf) By Block Aumoer)

HP 9000 Series 800 Ada Compiler, Version 4.35, Wright-Patterson
Version A.B3.10 (release 3.1), ACVC 1.10.

Hewletf't Packard Company,
BFB, EP 9000 Series 800 Modal 850 under HP-UX,

N

(1] "W‘ 473 i o 1 wov 88 15 0RSD.LYE
AN 33 $7& 0302-LF-034-8821 QNQLASSIF‘EQ
Sltv."" CLAsSIfication OF Tis PAGL (wrenDate Entered)

Ada Compiler Validation Summary Report:

Compiler Name: HP 9000 Series 800 Ada Compiler, Version 4.35
Certificate Number: 891019W1.10178
Host: HP 9000 Series 800 Model 850 under
HP-UX, Version A.B3.10 (release 3.1)
Target: HP 9000 Series 800 Model 850 under
HP-UX, Version A.B3.10 (release 3.1)
Testing Completed 19 October 1989 Using ACVC 1.10

Customer Agreement Number: 89-08-15-HPC

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. VWilson
Technical Director
ASD/SCOL
Vright-Patterson AFB OB 45433-6503

P
o &

Ada Validation Organization

Director, Computer & Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

e

7
/4, -— f‘/ "?”w

Ada Joint Program Office

Dr. John Solomond

Accession For

f:‘j

Director (?

Department of Defense FTIS GRA&I

Washington DC 20301 DTIC TAB a
Unannounced 0
Justification .
By
Digtribution/

W

Avallability Codes

Avail and/or
Dist Special

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS P R
1.5 ACVC TEST CIJASSES 3 . . . L] . . 1-4

CHAPTER 2 CONFIGURATION INFORMATION
2.1 CONFIGURATION TESTED. . . . e e e 4 e e e 2-1
2.2 IMPLEMENTATION CdARACTERISTICS. e v e e e e e 2-2

CHAPTER 3 TEST INFORMATION
3.1 TEST RESULTS. B
3.2 SUMMARY OF TEST RESULTS BY CLASS e e e e e e o« 31
3.3 SUMMARY OF TEST RESULTS BY CHAPTER. 3-2
3-4 VITHDRAVN TESTS 3 3-2
3.5 INAPPLICABLE TESTS. . . . « « « . . . 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIPICATIONS . 3-6
3.7 ADDITIONAL TESTING INFORMATION. o« 327
3.7-1 Prevalidation L] 3-7
3.702 TeSt MethOd 3-7
3.7.3 Test Site « « 0 v o o o 0 ., . 3-8

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY THE HEWLETT PACKARD COMPANY

CHAPTER 1
INTRODUCTION

, N
v ~)

This Validation Summary Report £¥SR)—describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of _testing this compiler using the Ada Compiler
Validation Capability ,{ACVE€)~ ~An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in. the Standard.-~

it ‘—""-——"A\—“"‘/

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.

The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. ™ The purpose of validating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

INTRODUCTION

1.1 FURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supperted by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AV0).
On-site testing was completed 19 October 1989 at Cupertino CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this 1is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Qffice

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Pacility

ASD/SCOL
Vright-Patterson AFB OH 45433-6503

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANST/MIL-STD-1815A, February 1983 and 1S0 8652-1987.

2. Ada Compiler Validation Procedures, Version 2.0, Ada Joint Program

Off

ice, May 1989.

3. Ada Compiler Validation Capability Implementers’ Guide, SofTech,

Inc., December 1986.

4. Ada Compiler Validation Capability User’s Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVF

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having the
form AI-ddddd.

ANSI/MIL-STD-1815A, February 1983 and IS0 8652-1987.
The agency requesting validation.
The Ada Validation Facility. The AVF is responsible for

conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this

report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

1-3

INTRODUCTION
Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.
Host The computer on which the compiler resides.
Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

- result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler’s conformity regarding a

particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Vithdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and 1illegal Ada programs structured into six test
classes: a4, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the successful compilation of legal Ada programs with
certain language constructs which cannot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result vhen it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled wunits are detected and not allowved to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message hefore any
declarations in the main program or any units referenced by the main
program are elaborated. 1In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity Zfunctions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be

1-5

INTROD!"ION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:

Compiler: HP 9000 Series 800 Ada Compiler, Version 4.35

ACVC Version: 1.10

Certificate Number: 891019v1.10178

Host Computer:

Machine: HP 9000 Series 800 Model 850

Operating System: HP-UX
Version A.B3.10 (release 3.1)

Memory Size: 96 Mb

Target Computer:
Machine: HP 9000 Series 800 Model 850
Operating System: HP-UX :
Version A.B3.10 (release 3.1)

Memory Size: 76 Mb

2-1

]

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Clas< D and E tests specifically check for such implementation
differences. Be 2wver, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The <compiler correctly procasses tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The <compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D6400SE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
SHORT_INTEGER, SHORT SHORT INTEGER, and LONG_FLOAT in package
STANDARD. (See tests B8600IT..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value 1is checked for
membership in a component’s subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3) This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

2-2

CONFIGURATION INFORMATION

(4) NUMERIC ERROR is raised when an integer literal operand in a
comparison or membership test is outside the range of the base
type. (See test C45232A.)

(5) Sometimes NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..Z (26 tests).)

. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following: :

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..Z (26 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test C4AQ014A.)

. Array types.

An implementation is allowed to raise NUMERIC ERROR or
CONSTRAINT ERROR for an array having a ‘LENGTH that exceeds
STANDAnD.INTEGER’ LAST and/or SYSTEM.MAX INT.

For this implementation:

(1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX INT components raises NUMERIC _ERROR. (See
test C36003A.)

(2) NUMERIC ERROR is raised when an array type with INTEGER’LAST +
2 components with each component being a null array is
declared. (See test C36202A.)

(3) NUMERIC_ERROR is raised when an array type with SYSTEM.MAX INT
+ 2 components with each component being a null array is
declared. (See test C36202B.)

(4) A packed BOOLEAN array having a ’'LENGTH exceeding INTEGER’LAST

raises NUMERIC ERROR when the array type is declared. (See
test C52103X.)

2-3

f.

g.

h.

(5)

(6)

(7

(8)

CONFIGURATION INFORMATION

A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC_ERROR when the array
type is declared. (See test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC ERROR when the array type is declared. (See
test E52103Y.)

In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
with the target’s subtype. (See test C52013A.)

In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression’s subtype is
compatible with the target’s subtype. (See test C52013A.)

Discriminated types.

(1)

In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
vhen checking whether the expression’s subtype is compatible
with the target’s subtype. (See test C52013A.)

Aggregates.

(1)

(2)

(3)

In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

CONSTRAINT ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

Pragmas.

(1

The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B (2 tests), EA3004C..D (2 tests), and
CA3004E..F (2 tests).)

i.

j.

CONFIGURATION INFORMATION

Generics.

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

Input and output.

(1) The package SEQUENTIAL I0 can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT I0 can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes IN FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E (2 tests), CE2102N, and CE2102P.)

(4) Modes IN FILE, OUT_FILE, and INOUT FILE are supported for
DIRECT _IO0. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

(5) Modes IN FILE and OUT FILE are supported for text files. (See
tests CE3102E and CE3102I..K (3 tests).)

(6) RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are supported for DIRECT_IO. (See
tests CE2102K and CE2102Y.)

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE3112A.)

2-5

(13)

(14)

(15)

CONFIGURATION INFORMATION

More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

More than one internal file can be associated with each
external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

More than one internal file can be associated with each

external file for text files when writing or reading. (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 362 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation. Modifications to the code, processing, or grading
for 35 tests were required to successfully demonstrate the test objective.
(See section 3.6.) .

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B c D E L

Passed 129 1132 1961 17 26 46 3311
Inapplicable 0 6 354 0 2 0 362
Vithdrawn 1 2 35 0 6 0 44
TOTAL 130 1140 2350 17 34 46 3717

3-1

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 160 332 137 36 252 261 297 3311
Inappl 14 72 135 3 0 0 6 0 0 0 0 108 24 362
Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44
TOTAL 213 6350 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 VITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time of
this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D

CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G

CD2A84M CD2A84N CD2B15C CD2D11B CD50078B CD50110
ED7004B ED7005C ED7005D ED7006C ED7006D CD7105A
CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
vithdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily. inapplicable for a subsequent
attempt. For this validation attempt, 362 tests were inapplicable for the
reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests) C35706L..Y (14 tests)

C35707L..Y (14 tests) C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests) C45421L..Y (14 tests)

3-2

TEST INFORMATION

C45521L..Z (15 tests) C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

. C35702A and B86001T are not applicable because this implementation

supports no predefined type SHORT_FLOAT.

The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C -C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD7101F

C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA is less than 48.

C86001F is not applicable because, for this implementation, the
package TEXT_I0 is dependent upon package SYSTEM. This test
recompiles package SYSTEM, making package TEXT IO, and hence
package REPORT, obsolete.

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

. B86001Z 1is not applicable because this implementation supports no

predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

C87B62B applies the attribute ’'STORAGE SIZE to an access type for
vhich no STORAGE_SIZE 1length clause is given, raising
STORAGE_ERROR. The AVO ruled that this behavior is acceptable and
the test is not applicable.

CD1009C, CD2A41A..B (2 tests), CD2A41E, and CD2A42A..J (10 tests)
are not applicable because this implementation does not support
size clauses for floating point types.

The following 24 tests are not applicable because this
implementation does not support size clauses for derived private
types:

CD1C04A CD2A21C CD2A21D CD2A22C CD2A22D
CD2A22G CD2A22H CD2A31C CD2A31D CD2A32C
CD2A32D CD2A32G CD2A32H CD2A41C CD2A41D
CD2A51C CD2A51D CD2A52C CD2A52D CD2A52G
CD2A52H CD2A53D CD2A54D CD2A54H

CD1C04B, CD1CO4E, and CD4051A..D (4 tests) are not applicable

because this implementation does not support representation
clauses on derived records or derived tasks.

3-3

TEST INFORMATION

CD2A61A..D (4 tests), CD2A61F, CD2A61H..L (5 tests), CD2A62A..C (3
tests), CD2A71A..D (4 tests), CD2A72A..D (4 tests), CD2A74A..D (4
tests), and CD2A75A..D (4 tests) are not applicable because of the
vay this implementation allocates storage space for one component
of an array or a record. The size specification clause for an
array type or for a record type requires compression of the
storage space needed for all the components, without gaps.

CD2A84B..1I (8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for
access types.

The following 21 tests are not applicable because this
implementation does not support an address clause for a constant:

CD5011B CD5011D CD5011F CD5011H CD5011L
CD5011N CD5011R CD5012C CD5012D CD5012G
CD5012H CD5012L CD5013B CD5013D CD5013F
CD5013H CD5013L CD5013N CD5013R CD5014U
CD5014W

. CD5012J, ¢€D5013S, and CD5014S are not applicable because this

implementation does not support address clauses for tasks.

CE2102D 1is inapplicable because this implementation supports
CREATE with IN_FILE mode for SEQUENTIAL_IO.

CE2102E 1is inapplicable because this implementation supports
CREATE with OUT_FILE mode for SEQUENTIAL_IO.

. CE2102F 1is inapplicable because this implementation supports

CREATE with INOUT_FILE mode for DIRECT_IO.

CE2102I is inapplicable because this implementation supports
CREATE with IN_FILE mode for DIRECT_IO.

. CE2102J 1is inapplicable because this implementation supports

CREATE with OUT_FILE mode for DIRECT_IO.

CE2102N 1is inapplicable because this implementation supports OPEN
with IN FILE mode for SEQUENTIAL_IO.

. CE21020 is inapplicable because this implementation supports RESET

with IN FILE mode for SEQUENTIAL_IO.

. CE2102P is inapplicable because this implementation supports OPEN

with OUT_FILE mode for SEQUENTIAL_IO.

. CE2102Q is inapplicable because this implementation supports RESET

with OUT_FILE mode for SEQUENTIAL_IO.

3-4

TEST INFORMATION

y. CE2102R is inapplicable because this implementation supports OPEN
with INOUT_FILE mode for DIRECT_IO.

z. CE2102S is inapplicable because this implementation supports RESET
with INOUT_FILE mode for DIRECT_IO.

aa. CE2102T 1is inapplicable because this implementation supports OPEN
vith IN_FILE mode for DIRECT_IO.

ab. CE2102U is inapplicable because this implementation supports RESET
with IN_FILE mode for DIRECT_IO.

ac. CE2102V is inapplicable because this implementation supports OPEN
with OUT_FILE mode for DIRECT_IO.

ad. CE2102V is inapplicable because this implementation supports RESET
with QUT_FILE mode for DIRECT_IO.

ae. EE2401D and EE2401G are not applicable because USE_ERROR is raised
vhen trying to create a file with unconstrained array types.

af. CE2401H 1is 1inapplicable because this implementation does not
support CREATE with INOUT_FILE mode for unconstrained records with
default discriminants.

ag. CE3102E is 1inapplicable because this implementation .supports
CREATE with IN_FILE mode for text files.

ah. CE3102F is inapplicable because this implementation supports RESET
for text files.

ai. CE3102G is inapplicable because this implementation supports
deletion of an external file for text files.

aj. CE31021 1is inapplicable because this implementation supports
CREATE with OUT_FILE mode for text files.

ak. CE3102J 1is inapplicable because this implementation supports OPEN
wvith IN_FILE mode for text files.

al. CE3102K 1is inapplicable because this implementation supports OPEN
with OUT_FILE mode for text files.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwvise) applicable test. Examples of such modifications include:
adding a length clause to alter the defauit size of a collection; splitting

3-5

TEST INFORMATION

a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that wasn’t anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 35 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B23004A B24007A - B24009A B25002A B26005A B27005A
B28003A B32202A B32202B B32202C B33001A B36307A
B37004A B45102A B49003A B49005A B61012A B62001B
B74304B B74401F B74401R B91004A B95004A B95032A
B95069A B95069B BA1101B BC2001D BC3009A BC3009C
BD5005B

The following modifications were made to compensate for legitimate
implementation behavior:

a. At the recommendation of the AVQ, the expression "2**T’/MANTISSA -
1" on line 262 of test CCl1l223A was changed to
"(2%%(T'MANTISSA-1)-1 + 2**(T’MANTISSA-1))" since the previous
expression causes an unexpected exception to be raised.

The following tests were graded using a modified evaluation criteria:

a. BA2001E expects that the non-distinctness of names of subunits
vith a common ancestor be detected at compile time, but this
implementation detects the errors at link time. The AVO ruled
that it 1is also acceptable to make the error detection at link
time. Thus, this test is considered to be passed if the intended
errors are detected at either compile or link time.

b. EA3004D and LA3004B both fail to detect an error because pragma
INLINE is invoked for a function that is called within a package
specification. By re-ordering the files, it may be shown that
INLINE indeed has no effect. The AVO has ruled that both are to
be run as is, noting that both fail to detect errors where INLINE
is invoked from within a package specification. The compilation
files are then re-ordered. For EA3004D, the order is 0, 1, 4, 5,
2, 3, 6; and for LA3004B, the order is 0, 1, 5, 6, 2, 3, 4, 7.
The tests both execute and produce the expected NOT APPLICABLE
result, as though INLINE were not supported at all. Both tests
are graded as passed.

3-6

TEST INFORMATION

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the HP 9000 Series 800 Ada Compiler, Version 4.35, was submitted to the
AVF by the applicant for review. Analysis of these results demonstrated
that the compiler successfully passed all applicable tests, and the
compiler exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the HP 9000 Series 800 Ada Compiler, Version 4.35, using ACVC
Version 1.10 was conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the
folloving designations of hardware and software components:

Host computer: HP 9000 Series 800 Model 850

Host operating system: HP-UX, Version A.B3.10 (release 3.1)
Target computer: HP 9000 Series 800 Model 850

Target operating system: BRP-UX, Version A.B3.10 (release 3.1)
Compiler: HP 9000 Series 800 Ada Compiler,

Version 4.35

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make wuse of
implementation-specific values were customized before being written to the
magnetic tape. Tests requiring modifications during the prevalidation
testing were included in their modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer.

After the test files were loaded to disk, the full set of tests was
compiled, 1linked, and all executable tests were run on the HP 9000 Series
800 Model 850. Results were printed from the host computer.

The compiler was tested using command scripts provided by Hewlett Packard
Company and reviewed by the validation team. See Appendix E for a complete
listing of the compiler options for this implementation. The following
list of compiler options includes those options which were invoked by
default:

3-7

TEST INFORMATION

-L Produce an output listing.

-P 66 Set the out page length to 66 lines.

-e 999 Set the maximum number of errors to 999.

+Q Suppress printing source file name to stdout.

Tests were compiled, linked, and executed (as appropriate) using a single
computer. Test output, compilation listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3.7.3 Test Site

Testing was conducted at Cupertino CA and was completed on 19 October 1989.

APPENDIX A

DECLARATION OF CONFORMANCE

The Hewlett Packard Company has submitted the following
Declaration of Conformance concerning the HP 9000
Series 800 Ada Compiler.

A-1

DECLARATION OF CONFORMANCE

Compiler Implementor: Hewlett Packard Company, California Language Lab
Ada Validation Facility: ASD/SCEL, Wright Patterson AFB, OH 45433-6503
Ada Compiler Validation Capability (ACVC) Version: 1.10.

Base Contfiguration

Base Compiler Name: HP 9000 Series 800 Ada Compiler, Version 4.35.
Host Architecture ISA: HP 9000 Series 800 Model 85

Host OS and Version: HP-UX, Version A.B3.10 (release 3.1)

Target Architecture ISA: HP 9000 Series 800 Model 850

Target OS and Version: = HP-UX, Version Version A.B3.10 (release 3.1)

implementer’'s Declaration

I, the undersigned, representing Hewlett Packard Company, have implemented no
deliberate extentions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compilers listed in this declaration. I declare that Hewlett Packard Company is
owner of record of the Ada language compilers listed above and, as such, is
responsible for maintaining said compilers in conformance to ANSI/MIL-STD-
1815A. All certificates and registration for the Ada language compiler listed in this
declaration shall be made only in the owner’s corporate name.

Laid Gk Dater_ L0/16/7%

Hewlett Packard Company
David Graham
Ada R&D Section Manager

Owner’s Declaration

I, the undersigned, representing Hewlett Packard Company, take full responsibility
for implementation and maintenance of the Ada compiler listed above, and agree to
the public disclosure of the final Validation Summary Report. 1 further agree to
continue to comply with the Ada trademark policy, as defined by the Ada Joint
Program Office. I declare that all of the Ada langnage compilers listed, and their
host/target performance are in compliance with the Ada Language Standard
ANSI/MIL-STD-1815A.

_ﬁr/ dé—\ Date:___/¢ /@/ﬁ

Hewlett Packard Company
David Graham
Ada R&D Section Manager

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the HP 9000 Series 800 Ada Compiler, Version 4.35, as
described in this Appendix, are provided by Hewlett Packard Company.
Unless specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report. Implementation-specific
portions of the package STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT SHORT_INTEGER is range -128 .. 127;

type FLOAT is digits 6 range -2#1.111 1111 1111 1111 1111 1111#E+127 ..

2#1.11171111711117111171111711114E+127;
type LONG PLOAT is digits 15 range -2¥1.1111 1171 1111 1171 1111 1111
1111 lllT 1111 1111 1111 1111 1111%E+1023 .. 2417 1111 11117 1111 1111
11117 1111 1111 1111 1111 1111 1111 1111 11114#E+1023;

type DURATION is delta 2#0.000_000 000 000 Ol4 range -86_400.0 .. 86_400.0;

end STANDARD;

B-1

Appendix F
Implementation-Dependent

Characteristics for the HP 9000
Series 800 Development System

The Ada programming language is described in the Reference Manual for the Ada Programming Language
(hereafter called Ada RM). This manual, Reference Manual for the Ada Programming Language,
Appendix F, summarizes the implementation dependencies of the HP Ada Development System on the
HP 9000 Series 800 Computer System.

This manual describes the following:

HP implementation-dependent pragmas and attributes.

Specifications of the packages SYSTEM and STANDARD.

Instructions on using type representation clauses to fully specify the layout of data objects in memory.
Restrictions on unchecked type conversions.

Impiementation-dependent characteristics of input/output packages.

Information about HP-UX signals and the Ada runtime environment.

Instruction and examples on calling external subprogram written in HP-PA Assembly Language, HP C,
HP FORTRAN 77, and HP Pascal.

Implementation-Dependent Characteristics

F 1. Implementation Supported Pragmas

This section describes the predefined language pragmas and the Ada/800 implementation-specific
pragmas. Table F-1 lists these pragmas.

Table F-1. Ada/800 Pragmas

Action Pragma Name
Interface with subprograms written in other languages INTERFACE
INTERFACE_NAME
Support text processing tools INDENT
LIST
PAGE
Determine the layout of array and record types in PACK
memory IMPROVE
Direct the compiler to generate different code than ELABORATE
what is normally generated INLINE
SUPRESS
Affect tasking programs PRIORITY
SHARED

Section F 1. 6 licts predefined pragmas not implemented in Ada/800.

B-3

Implementation-Dependent Characteristics

F 1.1 Interfacing the Ada Language with Other Lar)guages

Your Ada programs can call subprograms written in other languages when you use the predefined pragmas
INTERFACE and INTERFACE_NAME. Ada/800 supports subprograms written in these languages:

HP-PA Assembly Language

HPC

HP Pascal

HP FORTRAN 77 for HP 9000 Series 800 computers

Compiler products from vendors other than Hewlett~Packard may not conform to the parameter passing
conventions given below. See Section F 1l for detailed information, instructions, and examples for
interfacing your Ada programs with the above languages.

F1.1.1 Pragma INTERFACE
The pragma INTERFACE (4da RM, Section 1[3.9) informs the compiler that a non-Ada external
subprogram will be supplied when the Ada program is linked. Pragma INTERFACE specifies the
programming language used in the external subprogram and the name of the Ada interfaced subprogram.
The corresponding parameter calling convention to be used in the interface is implicitly defined in the
language specification.
Syntax
pragma INTERFACE (Language_name, Ada_subprogram_name);

where:

Language _name is one of ASSEMBLER, C, PASCAL, or FORTRAN.

Ada_subprogram_name is the name used within the Ada program when referring

to the interfaced external subprogram.

It is not possible to supply a pragma INTERFACE to a library-level subprogram. Any subprogram that a
pragma INTERFACE applies to must be contained within an Ada compilation unit, usually a package.

Implementation-Dependent Characteristics

F 1.1.2 Pragma INTERFACE_ NAME

Ada/800 provides the implementation-defined pragma INTERFACE_NAME to associate an alternative
name with a2 non-Ada external subprogram that has been specified to the Ada program by the pragma
INTERFACE.

Syntax
pragma INTERFACE_NAME (Ada_subprogram_name, "External_subprogram_name");
where:

Ada_subprogram_name is the name used within the Ada program when referring
to the interfaced external subprogram.

External _subprogram_name is the external name used outside the Ada program.

You must use prerma INTERFACE_NAME whenever the interfaced subprogram name contains characters
not acceptable within Ada identifiers or when the interfaced subprogram name contains uppercase
letter(s). You can also use a pragma INTERFACE_NAME if you want your Ada subprogram name to be
different than the external subprogram name.

If a pragma INTERFACE_NAME is not supplied, the external subprogram name is the name of the Ada
subprogram specified in the pragma INTERFACE, with all alphabetic characters shifted to lowercase
letters.

Pragma INTERFACE_NAME is allowed at the same places in an Ada program as pragma INTERFACE (see
Ada RM, Section 13.9.) Pragma INTERFACE_NAME must follow the declaration of the corresponding
pragma INTERFACE and must be within the same declarative part, although it need not immediately
follow that declaration.

B-5

Implementation-Dependent Characteristics

F 1.1.3 Example of INTERFACE and INTERFACE__NAME

The following example illustrates the INTERFACE and INTERFACE__ NAME pragmas.

package SAMPLE LIB is

function SAMPLE_DEVICE (X : INTEGER) return INTEGER;
function PROCESS_SAMPLE (X : INTEGER) return INTEGER;

private

pragma INTERFACE (ASSEMBLER, SAMPLE DEVICE);
pragma INTERFACE (C, PROCESS_SAMPLE);

pragma INTERFACE_NAME (SAMPLE DEVICE, "Dev10”);
pragma INTERFACE_NAME (PROCESS_SAMPLE, "DoSample”);

end SAMPLE_LIB;

This example defines two Ada subprograms that are known in Ada code as SAMPLE_DEVICE and
PROCESS_SAMPLE. When a call to SAMPLE_DEVICE is executed, the program will generate a call to the
externally supplied assembly function Dev10. Likewise, when a call to PROCESS_SAMPLE is executed, the
program will generate a call to the externally supplied HP C function DoSample.

By using the pragma INTERFACE_NAME, the names for the external subprograms to associate with the Ada
subprogram are explicitly identified. If pragma INTERFACE_NAME had not been used, the two external
names referenced would be sample_device and process_sample.

F 1.1.4 Additional Information on INTERFACE and INTERFACE__NAME

Either an object file (for binding and linking with the same command) or an object library (for binding
and linking separately) that defines the external subprograms must be provided as a command line
parameter to the Ada binder. The command line parameter must be provided to the linker ld(1) if you
call the linker separately. If you do not provide an object file that contains the definition for the
external subprogram, the HP-UX linker, Id(7), will issue an error message.

To avoid conflicts with the Ada runtime system, the names of interfaced external routines should not
begin with the letters "alsy", " Ada", or "RTS" because the Ada runtime system prefixes its internal
routines with these prefixes.

Implementation-Dependent Characteristics

When you want to call an HP-UX system call from Ada code, you should use a pragma INTERFACE with C
as the language name. You might need to use a pragma INTERFACE_NAME to explicitly supply the
external name. This external name must be the same as the name of the system call that you want to
call. (See Section 2 of the HP-UX Reference for details.) In this case it is not necessary to provide the C
object file to the binder, because it will be found automatically when the linker searches the system
library.

When you want to call an HP-UX library function from Ada code, you should use a pragma INTERFACE
with C as the language name. You should use pragma INTERFACE_NAME to explicitly supply the external
name. This external name must be exactly the same as the name of the library function. (See Section 3
of the HP-UX Reference for details. } If your library function is located in either the Standard C Library
or the Math Library, it is not necessary to provide the object library to the binder because the binder
always requests that the linker search these two libraries. If your library function is located in any of the
other standard libraries, you must provide the appropriate -1z option to the binder that the binder will
pass onto the linker as a request to search the specified library.

See Section F 11 for additional information on using pragma INTERFACE and pragma INTERFACE_NAME.

F 1.2 Using Text Processing Tools

The pragma INDENT is a formatting command that affects the HP supplied reformatter, ada. format(1).
This pragma does not affect the compilation listing output of the compiler. The pragmas LIST and PAGE
are formatting commands that affect the compilation listing output of the compiler.

F 1.2.1 Pragma INDENT

Ada/ 800 provides the implementation-defined pragma INDENT to assist in reformatting Ada source code.
You can place these pragmas in the source code to control the actions of ada. format(1).

Syntax
pragma INDENT (ON | OFF);
Parameters
Parameter Description
OFF ada. format does not modify the source lines after the pragma.
ON ada. format resumes its action after the pragma.

The default for pragma INDENT is ON.

Implementation-Dependent Characteristics

F 1.2.2 Pragma LIST

The pragma LIST affects only the compilation listing output of the compiler. It specifies that the listing
of the compilation is to be continued or suspended until a LIST pragma with the opposite argument is
given within the same compilation. The pragma itself is always listed if the compiler is producing a
listing. The compilation listing feature of the compiler is enabled by issuing one of the compiler options
-L or -B to the ada(?) command.

Syntax
pragma LIST (ON | OFF);
Parameters
Parameter Description
OFF The listing of the compilation is suspended after the pragma.
ON The listing of the compilation is resumed and the pragma is listed.

The default for pragma LIST is ON.

F 1.2.3 Pragma PAGE

The pragma PAGE affects the compilation listing output of the compiler. It specifies that the program
text which follows the pragma should start on a new page (if the compiler is currently producing a
listing).

Syntax

pragma PAGE;

Implementation-Dependent Characteristics

F 1.3 Affecting the Layout of Array and Record Types

The pragmas PACK and IMPROVE affect the layout of array and record types in memory.

F 1.3.1 Pragma PACK
The pragma PACK takes the simple name of an array type as its only argument. The allowed positions for
this pragma and the restrictions on the named type are governed by the same rules as for a repesentation
clause. The pragma specifies that storage minimization should be the main criterion when selecting the
representation of the given type.
Syntax

pragma PACK (array_type name);
The pragma PACK is not implemented for record types on Ada/800. You can use a record representation

clause to minimize the storage requirements for a record type.

The pragma PACK is discussed further in Section F 4.7, "Array Types."

F 1.3.2 Pragma IMPROVE

The pragma IMPROVE, an implementation~-defined pragma, suppresses implicit components in a record
type.

Syntax

pragma IMPROVE (TIME | SPACE , [ON =>] record_type_name);

The default for pragma IMPROVE is TIME. This pragma is discussed further in Section F 4.8, "Record
Types." o

F 1.4 Generating Code
The pragmas ELABORATE, INLINE, and SUPPRESS direct the compiler to generate different code than

would have been normally generated. These pragmas can change the run time behavior of an Ada
program unit.

B-9

Implementation-Dependent Characteristics

F 1.4.1 Pragma ELABORATE

The pragma ELABORATE is used when a dependancy upon elaboration order exists. Normally the Ada
compiler is given the freedom to elaborate library units in any order. This pragma specifies that the
bodies for each of the library units named in the pragma must be elaborated before the current
compilation unit. If the current compilation unit is a subunit, the bodies of the named library units must
be elaborated before the body of the parent of the current subunit.

Syntax

pragma ELABORATE (library unit_name
[, library unit_name | ...);

This pragma takes as its arguments one or more simple names, each of which denotes a library unit. This
pragma is only allowed immediately after the context clause of a compilation unit (before the subsequent
library unit or secondary unit). Each argument must be the simple name of a library unit that was
identified by the context clause. (See the Ada RM, Section 10.§, for additional information on
elaboration of library units.)

F 1.4.2 Pragma INLINE

The pragma INLINE specifies that the subprogram bodies should be expanded inline at each call whenever
possible; in the case of a generic subprogram, the pragma applies to calls of its instantiations. If the
subprogram name is overloaded, the pragma applies to every overloaded subprogram. Note that pragma
INLINE has no effect on function calls appearing inside package specifications.

Syntax

pragma INLINE (subprogram_name [, subprogram name | ...);

This pragma takes as its arguments one or more names, each of which is either the name of a subprogram
or the name of a generic subprogram. This pragma is only allowed at the place of a declarative item in a
declarative part or package specification, or after a library unit in a compilation, but before any
subsequent compilation unit. See the Ada RM, Section 6.3.2, for additional information on inline
expansion of subprograms.

This pragma can be suppressed at compile time by issuing the compiler option -I to the ada(7)
command.

Implementation-Dependent Characteristics

F 1.4.3 Pragma SUPPRESS

The pragma SUPPRESS allows the compiler to omit the given check from the place of the pragma .to the
end of the declarative region associated with the innermost enclosing block statement or program unit.
For a pragma given in a package specification, the permission extends to the end of the scope of the
named entity.

Syntax

pragma SUPPRESS (check_identifier [, [ON =>] name]);

The pragma SUPPRESS takes as arguments the identifier of a check and optionally the name of either an
object, a type or subtype, a subprogram, a task unit, or a generic unit. This pragma is only allowed at the
place of a declarative item in a declarative part or a package specification.

If the pragma includes a name, the permission to omit the given check is further restricted: it is given only
for operations on the named object or on all objects of the base type of a named type or subtype; for calls
of a named subprogram; for activations of tasks of the named task type; or for instantiations of the given
generic unit. (See the Ada RM, Section 11.7, for additional information on suppressing run time checks.)

The compiler can be directed to suppress all run time checks by issuing the compiler option -R to the
ada(1) command. The compiler can also be directed to suppress all run time checks except for stack
checks by issuing the compiler option -C to the ada(7) command.

F 1.5 Atftecting Run Time Behavior

The pragmas PRIORITY and SHARED affect the run time behavior of a tasking program.

F 1.5.1 Pragma PRIORITY

The pragma PRIORITY specifies the priority to be used for the task or tasks of the task type. When the
pragma is applied within the outermost declarative part of the main subprogram, it specifies the priority
to be used for the environment task, which is the task that encloses the main subprogram. If a pragma
PRIORITY is applied to a subprogram that is not the main subprogram, it is ignored.

Syntax

pragma PRIORITY (static_ezpression);

The pragma PRIORITY takes as its argument a static expression of the predefined integer subtype
PRIORITY. For Ada/800, the range of the subtype PRIORITY is 1 to 127. This pragma is only allowed
within the specification of a task unit or within the outermost declarative part of the main subprogram.

These task priorities are only relative to other Ada tasks that are concurrently executing with the
environment task. This pragma does not change the priority of an Ada task or the Ada environment task
relative to other HP-UX processes. All the Ada tasks execute within a single HP-UX process. This
HP-UX process executes together with other HP-UX processes and is scheduled by the HP-UX kernal. To
change the priority of an HP-UX process, see the command nice(7). See the Ada RM, Section 9.8, for
additional information on task priorities.

Implementation-Dependent Characteristics

F 1.5.2 Pragma SHARED
The pragma SHARED specifies that every read or update of the variable is a synchronization point for that
variable. The type for the variable object is limited to scalar or access types because each read or update
must be implemented as an indivisible operation.
The effect of pragma SHARED on a variable object is to suppress the promotion of this object to a register
by the compiler. The compiler suppresses this optimization and ensures that any reference to the variable
always retrieves the value stored by the most recent update operation.
Syntax

pragma SHARED (variable_simple_name);
The pragma SHARED takes as its argument a simple name of a variable. This pragma is only allowed for a
variable declared by an object declaration and whose type is a scalar or access type: the variable
declaration and the pragma must both occur (in this order) within the same declarative part or package

specification.

See the Ada RM, Section 9. 11, for additional information on shared variables.

F 1.6 Pragmas Not implemented
The following predefined language pragmas are not implemented and will issue a warning at compile time:
pragma CONTROLLED (access_type simple_name);
pragma MEMORY_SIZE (numeric_literal);
pragma OPTIMIZE (TIME | SPACE);
pragma STORAGE UNIT (numeric_literal);

pragma SYSTEM_NAME (enumeration_literal);

See the Ada RM, Appendix B, for additional information on these predefined language pragmas.

B-12

Implementation-Dependent Characteristics

F 2. Implementation-Dependent Attributes

In addition to the representation attributes discussed in the Ada RM, Section 13.7.2, there are five
implementation-defined representation attributes:

"OFFSET
“RECORD_SIZE
“VARIANT _INDEX
“ARRAY_DESCRIPTOR
"RECORD_DESCRIPTOR

These implementation-defined attributes are only used to refer to implicit components of record types
inside a record representation clause. Using these attributes outside of a record representation clause will
cause a compiler error message. For additional information, see Section F 4. 8, "Record Types".

F 2.1 Limitation of the Attribute 'ADDRESS

The attribute “ADDRESS is implemented for all entities that have meaningful addresses. The compiler
will i1ssue the following warning message when the prefix for the attribute “ADDRESS refers to an object
that has a meaningless address:

The prefix of the “ADDRESS attribute denotes a program unit that
has no meaningful address: the result of such an evaluation is
SYSTEM.NULL _ADDRESS.

The following entities do not have meaningful addresses and will cause the above compilation warning if
used as a prefix to "ADDRESS:

e A constant that is implemented as an immediate value (that is, a constant that does not have any space
allocated for it).

e A package identifier that is not a library unit or a subunit.

e A function that renames an enumeration literal.

Additionally, the attribute “ADORESS when applied to a task type will return different values, depending
upon the elaboration time of the task body. In particular, the value returned by the attribute “ADDRESS
before the task body 1s elaborated is zero. After elaboration of the task body, the address of the task body
will be returned. It is recommended that “ADDRESS not be applied to a task until after the task body has
been elaborated.

Implementation-Dependent Characteristics

F 3. The SYSTEM and STANDARD Packages

This section contains a complete listing of the two predefined library packages: SYSTEM and STANDARD.
These packages both contain implementation-dependent specifications.

F 3.1 The Package SYSTEM
The specificatic.a of the predefined library package SYSTEM follows:
-~ Standard Ada definitions

type NAME is (HP9000_800);
SYSTEM_NAME: constant NAME := HPS000_800;

STORAGE _UNIT: constant := 8;

MEMORY SIZE: constant := (2##31)-1;
MIN_INT: constant := -(2##31);
MAX INT: constant := 2#%#31-1;

MAX DIGITS: constant := 15;

MAX_MANTISSA: constant := 31;

FINE_DELTA: constant 2#1.0#e-31;

TICK: constant := 0.010; -- 10 milliseconds

subtype PRIORITY is INTEGER range 1..127 ;

type ADDRESS is private;

NULL_ADDRESS : constant ADDRESS; --set to NULL

-- exception to be raised when

-- (1) the space id of an address changes after addition or subtraction
-- (2) the space id’s of two addresses are not the same during comparison
ADDRESS_ERROR: exception;

-- Address arithmetic

function TO_INTEGER (LEFT : ADDRESS) return INTEGER;

function TO_ADDRESS (LEFT : INTEGER) return ADDRESS;

-- Note that ADDRESS + ADDRESS is not supported

function "+ (LEFT : INTEGER; RIGHT : ADDRESS) return ADDRESS;
function "+" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;

Implementation-Dependent Characteristics

Note that INTEGER - ADDRESS is not supported

function "-" (LEFT : ADDRESS; RIGHT : ADDRESS) return INTEGER;
function "-" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;

function "<¢" (LEFT : ADDRESS; RIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT : ADDRESS; RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT : ADDRESS; RIGHT : ADDRESS) return BOOLEAN;

function

>=" (LEFT : ADDRESS; RIGHT : ADDRESS) return BOOLEAN;

function "mod" (LEFT : ADDRESS; RIGHT : POSITIVE) return NATURAL{

function IS_NULL (LEFT : ADDRESS) return BOOLEAN;

function ALIGN (LEFT: ADDRESS) return ADDRESS;

align the given address up to four bytes boundary

function ALIGN (LEFT: ADDRESS; ALIGNMENT: INTEGER) return ADDRESS;

align the given address up or down to the alignment boundary

tunction IS_ALIGNED {LEFT: ADDRESS; ALIGNMENT: POSITIVE)
return BOOLEAN;

procedure COPY (FROM : ADDRESS; TO : ADDRESS; SIZE : NATURAL);

Copy SIZE storage units.

Functions to provide READ/WRITE operations in memory.

generic

type ELEMENT TYPE is private;

tunction FETCH (FROM : ADDRESS) return ELEMENT TYPE;

Return the bit pattern stored at address FROM, as a value of

the given type.

WARNING: The use of this function with unconstrained array types
can result in erroneous program execution. The target object of
this function may be damaged or unallocated memory may be accessed
resulting in an exception being raised or the program being
aborted.

generic

type ELEMENT_TYPE is private;

procedure STORE (INTO : ADDRESS; OBJECT : ELEMENT TYPE);

-

Store the bit pattern representing the value of OBJECT, at

address INTO.

WARNING: The use of this procedure with unconstrained array types
can result in erroneous program execution. The target object of
this procedure may be damaged or unallocated memory may be
accessed resulting in an exception begin raised or the program
being aborted.

private
-- private part of package SYSTEM

end SYSTEM;

Implementaticn-Dependent Characteristics

Implementation~Dependent Characteristics

F 3.2 The Package STANDARD
The specification of the predefined library package STANDARD follows:
package STANDARD is

~-- The operators that are predefined for the types declared in this
-- package are given in comments since they are implicitly declared.
"-- Italics are used for pseudo-names of anonymous types (such as

-- untversal_real, universal_integer, and unwersal_fu:ed)

-- and for undefined information (such as any fixzed point_type).

-- Predefined type BOOLEAN
type BOOLEAN is (FALSE, TRUE);

-- The predefined relational operators for this type are as follows
-- (these are implicitly declared):

-- tunction =" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function "/=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function "¢" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function "<=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function ">" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function ">=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- The predefined logical operands and the predefined logical
-- negation operator are as follows (these are implicitly
-- declared):

-- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-~ function "not” (RIGHT : BOOLEAN) return BOOLEAN;

-- Predefined universal types

-- type universal_integer is predefined;

-- The predefined operators for the type universal_integer are as
-- follows (these are implicitly declared):

-- function "=" (LEFT, RIGHT : universal_integer) return BOOLEAN;
-- function " /=" (LEFT, RIGHT : universal 1.nteger') return BOOLEAN;
-- function "<" (LEFT, RIGHT : universal integer) return BOOLEAN;
-- function "“<=" (LEFT, RICIT : unwersal_wteger) return BOOLEAN;
-- function ">" (LEFT. RIGHT : universal_integer) return BOOLEAN;
-- function ">=" (LEFT, RIGHT . universal_integer) return BOOLEAN;

-- function "+ (RIGHT . universal_integer) return universal _integer;

-- function "-" (RIGHT : universal Lnteger) return universal _integer;
-- function "abs” (R .GHT : universal Lnteger) return universal _integer;

B-17

Implementation-Dependent Characteristics

-- function "+" (LEFT, RIGHT : wuniversal_integer) return universal_integer;
-- function “-" (LEFT, RIGHT : universal_integer) return universal_integer;
-- tunction "#" (LEFT, RIGHT : universal_integer) return universal_integer;
-- function "/" (LEFT, RIGHT : universal_integer) return universal_integer;

-- function “rem" (LEFT, RIGHT : universal_integer) return universal_integer;
-- function "mod" (LEFT, RIGHT : universal _integer) return unwersal_mteger,

-- function "##" (LEFT : universal_integer;
-- RIGHT : INTEGER) return universal_integer;

-- type universal_real is predefined;

-- The predefined operators for the type universal_real are as follows
-- (these are implicitly declared):

-- tunction "=" (LEFT, RIGHT : universal_real) return BOOLEAN;

-- function “/=" (LEFT, RIGHT : universal real) return BOOLEAN;

-- function "<" (LEFT, RIGHT : universal_real) return BOOLEAN;

-- function "<=" (LEFT, RIGHT : universal_real) return BOOLEAN;

-- tunction ">" (LEFT, RIGHT : universal_real) return BOOLEAN;

-- tunction ">=" (LEFT, RIGHT : universal_real) return BOOLEAN;

-- tunction "+ (RIGHT : universal_real) return universal_real;
-- function "-" (RIGHT : universal real) return universal real;
-- function "abs" (RIGHT : unwersal_real) return unwersal_real

-- function "+" (LEFT, RIGHT : universal_real) return universal_real;
-~ function “-" (LEFT, RIGHT : universal real) return universal real;
-~ tunction "' (LEFT, RIGHT : universal_real) return universal_real;
-- tunction "/" (LEFT, RIGHT : unwersal_real) return universal _real;

-- tunction "##" (LEFT : universal_real;
-- RIGHT : INTEGER) return universal real;

-- In addition, the following operators are predefined for universal types:

-- function “#" (LEFT : universal_integer;

-- RIGHT : universal real) return universal_real

-- function "»" (LEFT : universal real;

-- RIGHT : universal z.nteger) return universal_ real;
-- function "/" (LEFT : universal real;

-- RIGHT : unwersal_znteger) return universal _real;

-- type universal fixed is predefined;

-- The only operators declared for this type are:

-- function "#" (LEFT : any_fixed point_type;

-- RIGHT : any fized point_type) return universal_fized;
-- tunction "/" (LEFT : any_fized point_type;

~- RIGHT : any_fixed point_type) return universal fized;

-- Predefined and additional integer types

type SHORT_SHORT_INTEGER is range -128 .. 127; -- 8 bits long
-- this is equivalent to -(2##7) .. (2##7)-1

B-18

Implementation-Dependent Characteristics

-- The predefined operators for this type are
-- (these are implicitly declared):

as follows

-- tunction "=" (LEFT, RIGHT : SHORT_SHORT_INTEGER) return BOOLEAN;
-- function /=" (LEFT, RIGHT : SHORT_SHORT_INTEGER) return BOOLEAN;
-~ tunction “<" (LEFT, RIGHT : SHORT__SHORT_INTEGER) return BOOLEAN;
-- tunction "<=" (LEFT, RIGHT : SHORT_SHORT_INTEGER) return BOOLEAN;
-- function “>" (LEFT, RIGHT : SHORT__SHORT_INTEGER) return BOOLEAN;
-- function "“>=" (LEFT, RIGHT : SHORT_SHORT_INTEGER) return BOOLEAN;

-- tunction "+" (RIGHT : SHORT_SHORT _INTEGER) return SHORT_SHORT_INTEGER;
-- tfunction "-" (RIGHT : SHORT SHORT INTEGER) return SHORT . SHORT INTEGER;
-~ function "abs" (RIGHT : SHORT SHORT _INTEGER) return SHORT SHORT INTEGER;

-- function "+" (LEFT,RIGHT: SHORT_SHORT_INTEGER) return SHORT_SHORT_INTEGER;
-- function "-" (LEFT,RIGHT: SHORT . _SHORT INTEGER) return SHORT SHORT INTEGER;

-- function

" (LEFT,RIGHT: SHORT . SHORT _INTEGER) return SHORT SHORT INTEGER;

»
-- function " /" (LEFT,RIGHT: SHORT . _SHORT INTEGER) return SHORT . SHORT INTEGER;
r

-=- function

em” (LEFT,RIGHT: SHORT _SHORT INTEGER) return SHORT SHORT INTEGER;

-- function "mod" (LEFT,RIGHT: SHORT_SHORT_INTEGER) return SHORT:SHORT:INTEGER;

-- function "##" (LEFT : SHORT_SHORT_INTEGER;

- RIGHT : INTEGER) refurn SHORT_SHORT_INTEGER;

type SHORT_INTEGER is range -32_768 .. 32_767;

~- this is equivalent to -(2##15) ., (2##15)-1
-- The predefined operators for this type are
-- (these are implicitly declared):

-- function "=" (LEFT, RIGHT : SHORT INTEGER)
-- function " /=" (LEFT, RIGHT : SHORT_INTEGER)
-- tunction "<" (LEFT, RIGHT : SHORT_INTEGER)
-- function "<=" (LEFT, RIGHT : SHORT_INTEGER)
-~ tunction ">" (LEFT, RIGHT : SHORT_INTEGER)
-- function ">=" (LEFT, RIGHT : SHORT_INTEGER)

--16 bits long

as fo llows

return BOOLEAN;
return BOOLEAN;
return BOOLEAN;
return BOOLEAN;
return BOOLEAN;
return BOOLEAN;

-- function "+" (RIGHT : SHORT_INTEGER) return SHORT_INTEGER;
~-- function "-" (RIGHT : SHORT _INTEGER) return SHORT INTEGER;

-- function

-- function “+" (LEFT, RIGHT : SHORT_INTEGER)
-- tunction "-" (LEFT, RIGHT : SHORT_INTEGER)
-- function "#»" (LEFT, RIGHT : SHORT_INTEGER)
-- function " /" (LEFT, RIGHT : SHORT_INTEGER)
-- function "rem" (LEFT, RIGHT : SHORT_INTEGER)
-- function "mod" (LEFT, RIGHT : SHORT_INTEGER)

-- function "##" (LEFT : SHORT_INTEGER;

abs" (RIGHT : SHORT_INTEGER) return SHORT_INTEGER

return SHORT_INTEGER;
return SHORT_INTEGER;
return SHORT_INTEGER;
return SHORT_INTEGER;
return SHORT_INTEGER;
return SHORT_INTEGER;

-- RIGHT : INTEGER) return SHORT_INTEGER;

type INTEGER is range -2_147_483 648 .. 2_147_483_647;

-- type INTEGER is 32 bits long

function
function
function
function
function
function

function
function
function

function
function

function
function
function

function

function '

L] <l|
<='
[1} L}

>|

N)=ll

ll+ll

"abs"

+

*.l

" "
rem
umodu

e

subtype NATURAL

(LEFT,
(LEFT,
(LEFT

(LEFT,
(LEFT,
(LEFT,

(RIGHT :
(RIGHT :
(RIGHT :

(LEFT,
(LEFT,
(LEFT,
(LEFT,
(LEFT,
(LEFT,

(LEFT :

this is equivalent to -(2##31) ..
The predefined operators for this type are as follows
(these are implicitly declared):
RIGHT :
RIGHT :
RIGHT :
RIGHT :
RIGHT :
RIGHT :

RIGHT :
RIGHT :
RIGHT :
RIGHT :
RIGHT :
RIGHT :

Predefined INTEGER subtypes
is INTEGER range 0 ..
subtype POSITIVE is INTEGER range 1

INTEGER)
INTEGER)
INTEGER)
INTEGER)
INTEGER)
INTEGER)

INTEGER)
INTEGER)
INTEGER)
INTEGER)
INTEGER)
INTEGER)

INTEGER; RIGHT :

Implementation-Dependent Characteristics

(2#%31)-1

return
return
return
return
return
return

return
return
return
return
return
return

BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;
BOOLEAN;

INTEGER) return INTEGER;
INTEGER) return INTEGER;
INTEGER) return INTEGER;

INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

INTEGERLAST;
INTEGERLAST;

-- Predefined and additional floating point types

type FLOAT is digits 6 range -- 32 bits long
S2H 11111111111 14E4127
281111 _ 1111 1111 _ 11111111 _ 11 114E412T7

-- This is equivalent to -(2.0 - 2.0##(-23)) # 2,0#%127 .

-3.402823E+38

+(2.0 - 2.0#8(-23)) » 2.0#%127

This is approximately equal to the decimal range:
.. +3.402823E+38

The predefined operators for this type are as follows
(these are implicitly declared):

INTEGER) return INTEGER;

-- function "=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- tunction "/=" (LEFT, RIGHT : FLCAT) return BOOLEAN;
-- tunction "<" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- tunction "<=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function ">" (LEFT, RIGHT FLOAT) return BOOLEAN;
-- tunction ">=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "+" (RIGHT : FLOAT) return FLOAT;
-- function "-" (RIGHT : FLOAT) return FLOAT;
-- tunction "abs" (RIGHT : FLOAT) return FLOAT;

B-20

Implementation-Dependent Characteristics

-- tunction "+" (LEFT, RIGHT : FLOAT) return FLOAT;
-- tunction "-" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "#" (LEFT, RIGHT : FLOAT) return FLOAT;
-- tunction "/" (LEFT, RIGHT : FLOAT) return FLOAT;

-- funclios ":#" (LEFT : FLOAT; RIGHT : INTEGER) return fLOAT;

type LONG_FLOAT is digits 1S range -- 64 bits long
S2AT TN _ N1 i 1 i 11t 111111111111 1111 _11114E+1023

2411111 _ 11111111 111011111111 _ 1111 _ 1111 _1111_1111#E+1023;

-- This is equivalent to -(2.0 - 2.0##(-52)) # 2.0##1023 ..
-- +(2.0 - 2.0##(-52)) » 2.0%%1023 ..

-- This is approximately equal to the decimal range:

-- -1.797693134862315E+308 .. +1.797693134862315E+308

-- The predefined operators for this type are as follows
-- (these are implicitly declared):

-- function "=" (LEFT, RIGHT : LONG_FLOAT) return BOOLEAN;
-- tunction "“/=" (LEFT, RIGHT : LONG_FLOAT) return BOOLEAN;
-- tunction "<" (LEFT, RIGHT : LONG_FLOAT) return BOOLEAN;
-- tunction “¢<=" (LEFT, RIGHT : LONG FLOAT) return BOOLEAN;
-- function “>" (LEFT, RIGHT LONG FLOAT) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : LONG FLOAT) return BOOLEAN;

-- function "+" (RIGHT : LONG_FLOAT) return LONG_FLOAT;
-- function "-" (RIGHT : LONG FLOAT) return LONG_| FLOAT
-- function "abs" (RIGHT : LONG FLOAT) return LONG FLOAT;

-- function "+" (LEFT, RIGHT : LONG_FLOAT) return LONG_FLOAT;
-- function "-" (LEFT, RIGHT : LONG_FLOAT) return LONG_FLOAT;
-- function "»" (LEFT, RIGHT : LONG_FLOAT) return LONG_FLOAT;
-- function "/" (LEFT, RIGHT : LONG_FLOAT) return LONG_FLOAT;

-- function "##" (LEFT : LONG_FLOAT; RIGHT : INTEGER) return LON

--This implementation does not provide any other floating point types

-- Predefined type DURATION

type DURATION is delta 2#0.000_000_000_000_O1# range -86_400.0 .. 86_400.0;
-- DURATION’SMALL derived from this delta is 2.0%#(-14) , which is the

-- maximum precision that an object of type DURATION can have and still

-- be representable in this implementation. This has an approximate

-- decimal equivalent of 0.000061 (61 microseconds).

-- The predefined operators for the type DURATION are the same as for any
-- fixed point type.

-- This implementation provides many anonymous predefined fixed point
-- types. They consist of fixed point types whose "small" value is

-- a power of 2.0 and whoce mantissa can be expressed using 31 or less
-- binary digits.

B-21

-~ Predefined type CHARACTER

Implementation-Dependent Characteristics

-- The following lists characters for the standard ASCII character set.
_-- Character literals corresponding to control characters are not
-- identifiers; they are indicated in italics in this section.

type CHARACTER is

(nul, soh, stx, etx, eot, enq, ack,
bs, ht, lf, vt, ff, er, so,
dle, del, dec2, de3, dec4, nak, syn,
can, em, sub, esc, fs, gs, rs,
’ I’ I!’, ’lll’ I#', ’s’, '%I’ ’&”
' ’ ’ 4 ’ r r r I'4 r ’ ’ 4 4

([}) ’ ., +, s T [}
lol’ I1I, ’2” l31’ ’ ’, ’sl’ ’6”
’ 4 ' 4 ’ , ' ’ r 4 I_I ” ’
8", 97, ":7, HE Ty, TET, 0T,
’@’, IAI, IB" ’Cl’ ’D" 'EI, ’F”
IHI’ III’ ’J” ’KI’ ILI’ 'Ml’ 'N”
4 ’ , r ’

Pl’ Q . IRI, ’s . ITI’ lul, V”
’ 4 r 4 ’r (4 14 ’ ’ 4 4 ’ »
x ’ Y b Z k] [? \”] k] ~]
4 " lai’ ’b’, ’C’, ldl’ Ie" 'fl’
’h” Ii” IJ’, Ik” ’1’, ’ml, 'nl’
’p’, Iq” Irl, Is’, Itl’ Iul’ ’vl,
’x" ’y’, Izl’ I(I’ I"’ ’)" '-I,

--The predefined operators for the type
--for any enumeration type.

-- Predefined type STRING (RM 3.6.3)

bel ,
si,
eth,
us,

CHARACTER a{re the same as

type STRING is array (POSITIVE range <>) of CHARACTER;

-- The predefined operators for this type are as follows:

-- function "=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : STRING) return BOOLEAN;
———-=———4unction "<" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">" (LEFT, RIGHT : STRING) return BOOLEAN;
-- tunction ">=" (LEFT, RIGHT : STRING) return BOOLEAN;

Predefined catenation operators

-- function "&" (LEFT : STRING; RIGHT
-~ function "&" (LEFT : CHARACTER; RIGHT :
-- function "&" (LEFT : STRING; RIGHT

function "&" (LEFT

~- Predefined exceptions

CONSTRAINT_ERROR : exception;
NUMERIC_ERROR : exception;
PROGRAM_ERROR : exception;
STORAGE_ERROR : exception;
TASKING_ERROR : exception;

B-22

: CHARACTER; RIGHT :

: STRING) return STRING;
STRING) return STRING;
: CHARACTER) return STRING;
CHARACTER) return STRING;

Implementation-Dependent Characteristics

-- Predefined package ASCII
package ASCII is

-- Control characters

NUL : constant CHARACTER := nul;
SCH : constant CHARACTER .= son;
STX : constant CHARACTER := stx;
ETX : constant CHARACTER := etx;
EOT : constant CHARACTER := eot;
ENQ : constant CHARACTER := eng;
ACK : constant CHARACTER := ack;
BEL : constant CHARACTER := bel;

BS : constant CHARACTER := bs;

HT : constant CHARACTER := ht;

LF : constant CHARACTER := lf;

vT : constant CHARACTER := vt;

FF : constant CHARACTER := ff;

CR : constant CHARACTER := cor;

SO : constant CHARACTER := so;

SI : constant CHARACTER := si;

DLE : constant CHARACTER .= dle;
DC1 : constant CHARACTER := del;
DC2 : constant CHARACTER := de2;
DC3 : constant CHARACTER := dc3;
DC4 : constant CHARACTER := dec4;
NAK : constant CHARACTER := nak;
SYN : constant CHARACTER := syn;
ETB : constant CHARACTER := etb;
CAN : constant CHARACTER := can;

EM : constant CHARACTER := em;

SUB : constant CHARACTER := sub;
ESC : constant CHARACTER := esc;

FS : constant CHARACTER := fs;

GS : constant CHARACTER := gs;

RS : constant CHARACTER := rs;

us : constant CHARACTER := us;

DEL : constant CHARACTER := del;

-- other characters

EXCLAM : constant CHARACTER :=
QUOTATION : constant CHARACTER :=
SHARP : constant CHARACTER :=
DOLLAR : constant CHARACTER :=
PERCENT : constant CHARACTER :=
AMPERSAND : constant CHARACTER :=
COLON : constant CHARACTER :=
SEMICOLON : constant CHARACTER :=
QUERY : constant CHARACTER :=
AT_SIGN : constant CHARACTER :=
L_BRACKET : constant CHARACTER :=
BACK_SLASH : constant CHARACTER :=
R_BRACKET : constant CHARACTER :=
CIRCUMFLEX : constant CHARACTER :=
UNDERLINE : constant CHARACTER :=

B-23

: constant
: constant
: constant
: constant
: constant

CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :

CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :
CHARACTER :

CHARACTER

CHARACTER :
CHARACTER :
CHARACTER :

CHARACTER

CHARACTER :
CHARACTER :
CHARACTER :

CHARACTER
CHARACTER
CHARACTER
CHARACTER

ee s

CHARACTER :

CHARACTER

GRAVE

L_BRACE

BAR

R_BRACE

TILDE

-- Lower case letters
LC_A : constant
LC_B : constant
LC_C : constant
LC_D : constant
LC_E : constant
LC_F : constant
LC_G : constant
LC_H : constant
LC_I : constant
LC_J : constant
LC_K : constant
LC_L : constant
LC_M : constant
LC_N : constant
LC_O : constant
LC_P : constant
LC_Q : constant
LC_R : constant
LC_S : constant
LC_T : constant
LC_U : constant
LC_V : constant
LC_W : constant
LC_X : constant
LC_Y : constant
LC_Z : constant

end ASCII;

end STANDARD;

CHARACTER :

L)
S v N

~
~

R T T S S S N
N X E<C A 1T02DTO0 33 —mXG.»JTQ H0QOTHN
L N S T T Y T S S N S R

~

~
W WP WP WS WY B Ye W WS W B WE WY WP e W WE We We B US WE we we we Be

~
~

~
-

B-24

Implementation-Dependent Characteristics

Implementation-Dependent Characteristics

F 4. Type Representation

This section explains how data objects are represented and allocated by the HP Ada compiler for the
HP 9000 Series 800 Computer System and how to control this using representation clauses.

The representation of a data object is closely connected with its type. Therefore, this section successively
describes the representation of enumeration, integer, floating point, fixed point, access, task, array and
record types. For each class of type, the representation of the corresponding data object is described.
Except for array and record types, the description for each class of type is independent of the others.
Because array and record types are composite types, it is necessary to understand the representation of
their components.

Ada/ 800 provides several methods to control the layout and size of data objects; these methods are listed
in Table F-2.

Tabie F-2. Methods to Control Layout and Size of Data Objects

Method Type Used On
pragma PACK array type
pragma IMPROVE record type
enumeration representation clause enumeration type
record representation clause record type
size specification clause any type

F 41 Enumeration Types
Syntax (Enumeration representation clause)
for enumer‘ation-type-name use aggregate;

The aggregate used to specify this mapping is written as a one-dimensional aggregate, for which the index
subtype is the enumeration type and the component type is universal_integer. An others choice is
not permitted in this aggregate.

B-25

Implementation-Dependent Characteristics

internal Codes of Enumeration Literals

When no enumeration representation clause applies to an enumeration type, the internal code associated
with an enumeration literal is the position number of the enumeration literal. Thus, for an enumeration
type with n elements, the internal codes are the integers O, |, 2,.. , n-1.

An enumeration representation clause can be provided to specify the value of each internal code as
described in the 4da RM, Section 13.3. The values used to specify the internal codes must be in the range
-(2%*31) to (2**31)-1.

The following example illustrates the use of an enumeration representation clause.

Example
type COLOR is (RED, ORANGE, YELLOW, GREEN, AQUA, BLUE, VIOLET);

for COLOR use
(RED => 10,
ORANGE => 20,
YELLOW => 40,
GREEN => 80,
AQUA => 160,
BLUE => 320,
VIOLET => 640);

In the above example, the internal representation for GREEN will be the integer 80. The attributes "SUCC
and “PRED will still return YELLOW and AQUA respectively. Also, the 4da RM, in section 13.3(6), states
that the “POS attribute will still return the positional value of the enumeration literal. In the case of
GREEN, the value that “POS returns will be 3 and not 80. The only way to examine the internal
representation of the enumeration literal is to write the value to a file or use UNCHECKED_CONVERSION to
examine the value in memory.

Implementation-Dependent Characteristics

Minimum Size of an Enumeration Type or Subtype

The minimum size of an enumeration subtype is the minimum number of bits that is necessary for
representing the internal codes in normal bina: y form.

A static subtype of a null range has a minimum size of one. Otherwise, define mand M to be the smallest
and largest values for the internal codes values of the subtype. The minimum size L is determined as
follows:

Value of m Calculation of L - Representation
smallest positive integer such that:

m>= 0 M<=(2%%) - | Unsigned
m< 0 -(2**L-1)) <=m and M<=(2**(L-]))-1 Signed two’s
complement
Exampie

type COLOR is (RED, ORANGE, YELLOW, GREEN, AQUA, BLUE, VIOLET):
-- The minimum size of COLOR is 3 bits.

subtype SUNNY_COLOR is COLOR range ORANGE .. YELLOW;
-- The minimum size of COLOR is 2 bits.

-- because the internal code for YELLOW is 2

-- and (2##1)-1 <= 2 <= (2##2)~1

type TEMPERATURE is (FREEZING, COLD, MILD, WARM, HOT);
for TEMPERATURE use
(FREEZING => -10,

coLdD => 0,
MILD => 10,
WARM => 20,

HOT => 30);
-- The minimum size of TEMPERATURE is 6 bits
-- because with six bits we can represent signed
-- integers between -32 and 31.

B-27

Implenientation-Dependent Characteristics

Size ot an Enumeration Type

When no size specification is applied to an enumeration type, the objects of that type are represented as
signed machine integers. The HP 9000 Series 800 Computer System provides 8-bit, 16-bit and 32-bit
integers, and the compiler automatically selects the smalilest signed machine integer which can hold all of
the internal codes of the enumeration type. Thus, the default size for enumeration types with 128 or less
elements is 8 bits, the default size for enumeration types with 129 to 32768 elements is 16 bits. Because
this implementation does not support enumeration types with more than 32768 elements, a size
specification or enumeration representation clause must be used for enumeration types that use a 32-bit
representation.

When a size specification is applied to an enumeration type, this enumeration type and all of its subtypes
have the size specified by the length clause. The size specification must specify a value greater than or
equal to the minimum size of the type. Note that if the size specification specifies the minimum size and
none of the internal codes are negative integers, the internal representation will be that of an unsigned
type. Thus, when using a size specification of eight bits, you can have up to 256 elements in the
enumeration type.

If the enumeration type is used as a component type in an array or record definition that is further
constrained by a pragma PACK or a record representation clause, the size of this component will be
determined by the pragma PACK or the record representation clause. This allows the array or record type
to temporarily override any size specification that may have applied to the enumeration type.

The Ada/800 compiler provides a complete implementation of size specifications. Nevertheless, because
enumeration values are coded using integers, the specified length cannot be greater than 32 bits.
Alignment of an Enumeration Type

An enumeration type is byte aligned if the size of the type is less than or equal to eight bits. An
enumeration type is aligned on a 2-byte boundary (16 bit or half-word aligned) if the size of the type is

less than or equal to 16 bits. An enumeration type is aligned on a 4-byte boundary (32 bit or word
aligned) if the size of the type is less than or equal to 32 bits.

B-28

~ Implementation-Dependent Characteristics

F 4.2 Integer Types

Predetined Integer Types

The HP 9000 Series 800 Computer System provides these three predefined integer types:

type SHORT SHORT INTEGER

is range -(2##7) .. (2#*7)-1; -- B8-bit signed
type SHORT_INTEGER
is range -(2##15) .. (2##15)-1; -- 16-bit signed

type INTEGER
is range -(2##31) .. (2##31)-1; -- 32-bit signed

An integer type declared by a declaration of the form

type T isrange L .. U;
is implicitly derived from a predefined integer type. The compiler automatically selects the smallest
predefined integer type whose range contains the values L to U, inclusive.
internal Codes of Integer Values
The internal codes for integer values are represented using the two’s complement binary method. The
compiler does not ever represent integer values using any kind of a bias representation. Thus, one internal
code will always represent the same literal value for any Ada integer type.

Minimum Size ot an Integer Type or Subtype

The minimum size of an integer subtype is the minimum number of bits that is necessary for representing
the internal codes of the subtype.

A static subtype of a null range has 2 minimum size of one. Otherwise, define mand M to be the smallest
and largest values for the internal codes values of the subtype. The minimum size L is determined as
follows:

Value of m Calculation of L - Representation
smallest positive integer such that:

m>=0 M<a (2%%)) - | Unsigned
m< 0 =(2**(L-1)) <= m and M <= (2**(L-1))-1 Signed two’s
complement

B-29

Implementation-Dependent Characteristics

Example

type MY_INT is range 0 .. 31;
-- The minimum size of MY_INT is S bits using
-- an unsigned representation

subtype SOME_INT is MY_INT range S .. T7;

-- The minimum size of SOME_INT is 3 bits.

-- The internal representatxon of 7 requires three
-- bimary bits using an unsigned representation.

subtype DYNAMIC_INT is MY_INT range L .. U;

-- Assuming that L and U are dynamic, (i.e. not known at compile time)
-- The minimum size of DYNAMIC_INT is the same as its base type,

-~ MY_INT, which is 5 bits.

type ALT_INT is range -1 .. 16;

-- The minimum size of MY_INT is 6 bits,

-- because using a 5-bit signed integer we

-- can only represent numbers in the range -16 .. 15
-- and using a 6-bit signed integer we

-- can represent numbers in the range -32 .. 3t

-- Since we must represent 16 as well as -1 the

-- compiler must choose a 6-bit signed representation

Size of an Integer Type

The sizes of the predefined integer types SHORT_SHORT_INTEGER, SHORT_INTEGER and INTEGER are 8,
16 and 32 bits, respectively.

When no size specification is applied to an integer type, the default size is that of the predefined integer
type from which it derives, directly or indirectly.

Example

type S is range 80 .. 100;
-~ Type S is derived from SHORT_SHORT_INTEGER
-- its default size is 8 bits.

type M is range 0 .. 255;
-- Type M is derived from SHORT_INTEGER
-- its default size is 16 bits.

type Z is new M range 80 .. 100;
-- Type Z is indirectly derived from SHORT_INTEGER
-- its default size is 16 bits.

type L is range 0 .. 99999;
-- Type L is derived from INTEGER
-- its default size is 32 bits.

Implementation-Dependent Characteristics

type UNSIGNED BYTE is range O .. (2##8)-1;

for UNSIGNED _BYTE’SIZE use 8;

-- Type UNSIGNED BYTE is derived from SHORT_INTEGER
-- its actual size is 8 bits.

type UNSIGNED_HALFNORD is range 0 .. (2##16)-1;
for UNSIGNED_HALFWORD’SIZE use 16;

-- Type UNSIGNED HALFWORD is derived from INTEGER
-- its actual size is 16 bits.

When a size specification is applied to an integer type, this integer type and all of its subtypes have the
size specified by the length cla e. The size specification must specify a value greater than or equal to the
minimum size of the type. If the size specification specifies that the minimum size and the lower bound
of the range is not negative, the internal representation will be unsigned. Thus, when using a size
specification of eight bits, you can represent an integer range from 0 to 255.

Using a size specification on an integer type allows you to define unsigned machine integer types. The
compiler fully supports unsigned machine integer types that are either 8 or 16 bits. The 8-bit unsigned
machine integer type is derived from the 16-bit predefined type SHORT_INTEGER. Using the 8-bit
unsigned integer type in an expression results in it being converted to the predefined 16-bit signed type
for use in the expression. This same method also applies to the 16-bit unsigned machine integer type,
such that using the type in an expression results in a conversion to the predefined 32-bit signed type.

However, Ada does not allow the definition of an unsigned integer type that has a greater range than the
largest predefined integer type. INTEGER is the largest predefined integer type and is represented as a
32-bit signed machine integer. Because the Ada language requires predefined integer types to be
symmetric about zero (dda RM, Section 3.5.4), it is not possible to define a 32-bit unsigned machine
integer type, because the largest predefined integer type, INTEGER, is also a 32-bit type.

If the integer type is used as a component type in an array or record definition that is further constrained
by a pragma PACK or record representation clause, the size of this component will be determined by the
pragma PACK or record representation clause. This allows the array or record type to temporarily
override any size specification that may have applied to the integer type.

The Ada/800 compiler provides a complete implementation of size specifications. Nevertheless, because
integers are coded using machine integers, the specified length cannot be greater than 32 bits.

Alignment of an Integer Type

An integer type is byte aligned if the size of the type is less than or equal to eight bits. An integer type is
aligned on a 2-byte boundary (16 bit or half-word aligned) if the size of the type is in the range of 9..16
bits. An integer type is aligned on a 4-byte boundary (32 bit or word aligned) if the size of the type is in
the range of 17..32 bits.

Performance of an Integer Type

The type INTEGER is the most efficient of the integer types in Ada/800 because the hardware can access
these integers and perform overflow checks on them with no additional cost. For the smaller integer
types (SHORT_INTEGER and SHORT_SHORT_INTEGER), the compiler must emit additional instructions for
access and overflow checking which increase both the executxon time and the size of the generated code.

Implementation-Dependent Characteristics

F 4.3 Floating Point Types

Predetined Floating Point Types
The HP 9000 Series 800 Computer System provides two predefined floating point types.

type FLOAT is digits 6 range
-(2.0 - 2.0%#(-23))#(2.0%%127) ..
+(2.0 - 2.0##(-23))#(2.0%#127);
-- This expresses the decimal range -3.40282E+38 ,. 3.40282E+38

type LONG_FLOAT is digits 15 range
-(2.0 - 2.0%#(-52))#(2.0#%#1023) ..
+(2.0 - 2.0%#(-52))%(2.0##1023);

-- This expresses the decimal range:

-- =-1.79769313486231SE+308 .. +1.797693134862315E+308

A floating point type declared by a declaration of the form

type T is digits D [range L .. U];
is implicitly derived from a predefined floating point type. The compiler automatically selects the smaller
of the two predefined floating point types FLOAT or LONG_FLOAT, whose number of digits is greater than
or equal to D and which contains the values L to U inclusive.
Internal Codes of Floating Point Values

The internal codes for floating point values are represented using the IEEE standard formats for single
precision and double precision floats.

The values of the predefined type FLOAT are represented using the single precision float format. The
values of the predefined type LON-> FLOAT are represented using the double precision float format. The
values of any other floating point cype are represented in the same way as the values of the predefined
type from which it derives, directly or indirectly.

B-32

Implementation-Dependent Characteristics

Minimum Size of a Floating Point Type or Subtype

The minimum size of a floating point subtype is 32 bits if its base type is FLOAT or 2 type derived from
FLOAT; it is 64 bits if its base type is LONG_FLOAT or a type derived from LONG_FLOAT.

Size of a Floating Point Type

The only size that can be specified for a floating point type in a size specification is its default size {32 or
64 bits)

Alignment of a Floating Point Type

A floating point type FLOAT is aligned on a 4-byte boundary (32 bit or word aligned). The floating point
type LONG_FLOAT is aligned on an 8-byte boundary (64 bit or double-word aligned).

B-33

Implementation~Dependent Characteristics

F 4.4 Fixed Point Types

Predefined Fixed Point Types

To implement fixed point types, the HP 9000 Series 800 Computer System provides a set of three
anonymous predefined fixed point types of the form:

type SHORT_FIXED is deita D range .

-(2##T)#SMALL .. +((2##7)-1)#SMALL;
for SHORT FIXED’SMALL use SMALL;
for SHORT _FIXED’SIZE use 8;

type FIXED is deita D range

-(2##15)#SMALL .. +((2##15)-1)#SMALL;
for FIXED SMALL use SMALL;
for FIXED'SIZE use 16;

type LONG_FIXED is delta D range

-(2##31)#SMALL .. +((2%#31)-1)#SMALL;
for LONG_FIXED’SMALL use SMALL;
tor LONG_FIXED'SIZE use 32;

-- In the above type definitions SMALL is the largest power of
-- two that is less than or equal to D.

A fixed point type declared by a declaration of the form
type T is delta D range L .. U;

is implicitly derived from one of the predefined fixed point types. The compiler automatically selects the
smallest predefined fixed point type using the following method:

1. Choose the largest power of two that is not greater than the value specified for the delta, to use as
SMALL. '

2. Determine the ranges for the three predefined fixed point types using the value obtained for SMALL.

3. Select the smallest predefined fixed point type whose range contains the values L+SMALL to U-SMALL
inclusive.

Using the above method, it is possible that the values L and U lie outside the range of the compiler selected
fixed point type. For this reason, the values used in a fixed point range constraint should be expressed as
follows, to guarantee that the values of L and U are representable in the resulting fixed point type:

type ANY_FIXED is delta D range L-D .. U+D;

-- The values of L and U are guaranteed to be
-- representable in the type ANY_FIXED.

B-34

Implementation-Dependent Characteristics

Internal Codes of Fixed Point Values

The internal codes for fixed point values are represented using the two’s complement binary method, as
integer multiples of “SMALL. The value of a fixed point object is “SMALL multiplied by the stored
internal code.

Small of a Fixed Point Type

The Ada/800 compiler requires that the value assigned to “SMALL is always a power of two. Ada/800
does not support a length clause that specifies a “SMALL for a fixed point type that is not a power of two.

If a fixed point type does not have a length clause that specifies the value to use for "SMALL, the value of
"SMALL is determined by the compiler according to the rules in the Ada RM, Section 3.5.9.
Minimum Size of a Fixed Point Type or Subtype

The minimum size of a fixed point subtype is the minimum number of binary digits that is necessary to
represent the values in the range of the subtype using the “SMALL of the base type.

A static subtype of a null range has 2 minimum size of one. Otherwise, define s and S to be the bounds of
the subtype, define mand M to be the smallest and greatest model numbers of the base type, and let 7 and
I be the integer representations for the model numbers mand M. The following axioms hold:

A
]

< M<=S§
T BASE“SMALL <= s
T’BASE "SMALL »>= §
T”BASE "LARGE
m / T BASE SMALL
M / T BASE’SMALL

~eex XTI

nun+

The minimum size L is determined as follows:

Valueof © Calculation of L - Representation
smallest positive integer such that:

i>=0 I <=(2%%]) -] Unsigned
1<0 ~(2**(L-1)) <= 1 and I <= (2**(L-1))-1 Signed two’s
complement

B-35

Implementation-Dependent Characteristics

Example

type UF is delta 0.1 range 0.0 .. 100.0;
-- The value used for “SMALL is 0.0625
-- The minimum size of UF is 11 bits,
-- seven bits before the decimal point
-- four bits after the decimal point
-- and no bits for the sign.

type SF is delta 16.0 range -400.0 .. 400.0;

-- The minimum size of SF is 6 bits,

-- nine bits to represent the range 0 to 511

-- less four bits by the implied decimal point of 16.0
-- and one bit for the sign.

subtype UFS is UF deita 4.0 range 0.0 .. 31.0;

-~ The minimum size of UFS is 9 bits,

-~ five bits to represent the range 0 to 31

-- four bits for the small of 0.0625 from the base type
-- and no bits for the sign.

subtype SFD is SF range X .. Y;

-- Assuming that X and Y are not static, the minimum size
-- of SFD is 6 bits. (the same as its base type)

Size of a Fixed Point Type

The sizes of the anonymous predefined fixed point types SHORT _FIXED, FIXED,and LONG_FIXED are 8, 16

and 32 bits, respectively.

When no size specification is applied to a fixed point type, the default size is that of the predefined fixed

point type from which it derives, directly or indirectly.

B-36

Implementation-Dependent Characteristics

Example

type Q is delta 0.01 range 0.00 .. 1.00;
-- Type Q is derived from an 8-bit predefined fixed point type,
-- its default size is 8 bits.

type R is delta 0.01 range 0.00 .. 2.00;
-- Type R is derived from a 16-bit predefined fixed point type,
-- its default size is 16 bits.

type S is new R range 0.00 .. 1.00;
-~ Type S is indirectly derived from a 16-bit predefined fixed point type,
-- its default size is 16 bits.

type SF is delta 16.C range -400.0 .. 400.0;

for SF'SIZE use 6;

-- Type SF is derived from an 8-bit predefined fixed point type,
-~ its actual size is 6 bits.

type UF is delta 0.1 range 0.0 .. 100.0;

for UF'SIZE use 11;

-- Type UF is derived from a 16-bit predefined fixed point type,
-- its actual size is 11 bits.

-- The value used for “SMALL is 0.0625

When a size specification is applied to a fixed point type, this fixed point type and all of its subtypes have
the size specified by the length clause. The size specification must specify a value greater than or equal to
the minimum size of the type. If the size specification specifies the minimum size and the lower bound of
the range is not negative, the internal representation will be that of an unsigned type.

If the fixed point type is used as a component type in an array or record definition that is further
constrained by a pragma PACK or record representation clause, the size of this component will be
determined by the pragma PACK or record representation clause. This ailows the array or record type to
temporarily override any size specification that may have applied to the fixed point type.

The Ada/800 compiler provides a complete implementation of size specifications. Nevertheless, because
fixed point objects are coded using machine integers, the specified length cannot be greater than 32 bits.
Alignment of a Fixed Point Type

A fixed point type is byte aligned if the size of the type is less than or equal to eight bits. A fixed point
type is aligned on a 2-byte boundary (16 bit or half-word aligned) if the size of the type is in the range of

9..16 bits. A fixed point type is aligned on a2 4-byte boundary (32 bit or word aligned) if the size of the
type is in the range of 17..32 bits.

B-37

Implementation-Dependent Characteristics

F 4.5 Access Types

Internal Codes of Access Values

In the program generated by the compiler, access values are represented using 32-bit machine addresses.
The predefined generic function UNCHECKED_CONVERSION can be used to convert the internal
representation of an access value into any other 32-bit type. You can also use UNCHECKED_CONVERSION
to assign any 32-bit value into an access value. When interfacing with externally supplied data
structures, it may be necessary to use the generic function UNCHECKED_CONVERSION to convert a value of
the type SYSTEM.ADDRESS into the internal representation of an access value. Programs which use
UNCHECKED_CONVERSION in this manner cannot be considered portable across different implementations
of Ada.

Collection Size for Access Types

A length clause that specifies the collection size is allowed for an access type. This collection size applies
to all objects of this type and any type derived from this type, as well as any and all subtypes of these
types. Thus, a length clause that specifies the collection size is only allowed for the original base type
definition and not for any subtype or derived type of the base type.

When no specification of collection size applies to an access type, the attribute STORAGE_SIZE returns
zero. In this case the compiler will dynamically manage the storage for the access type and it is not
possible to determine directly the amount of storage available in the collection for the access type.

The recommended format of a collection size length clause is:

U_NUM: constant :
U_SIZE: constant :
-- The constant U_SIZE should also be:
-- 1. a multiple of two

-- 2. greater than or equal to four

-- Additionally, the type U must have a static size
type P is access U; -- Type U is any non-dynamic user defined type.
for P'STORAGE_SIZE use (U_SIZE#U_NUM)+4;

50; -- The maximum number of elements needed
U size; -- Subsitute U’SIZE here

In the above example we have specified a collection size that is large enough to contain 50 objects of the
type U. There is a constant overhead of four bytes for each storage collection. Because the collection
manager rounds the element size to be a multiple of two that is four or greater, you must ensure that
U_SIZE is the smallest muitiple of two that is greater than or equal to U"SIZE and is greater than or
equal to four.

You can also provide a length clause that specifies the collection size for a type that has a dynamic size.
It is only possible to specify an upper limit on the amount of memory that can be used by all instances of
objects that are of this dynamic type. Because the size is dynamic, you cannot specify the number of
elements in the collection.

B-38

Implementation-Dependent Characteristics

Minimum Size of an Access Type or Subtype

The minimum size of an access type is always 32 bits.

Size ot an Access Type
The size of an access type is 32 bits, the same as its minimum size.

The only size that can be specified for an access type in a size specification clause is its usual size (32 bits).

Alignment of an Access Type

An access type is aligned on a 4-byte boundary (32 bit or word aligned).

Implementation-Dependent Characteristics

F 46 Task Types

internal Codes of Task Values

In the program generated by the compiler, task type objects are represented using 32-bit machine
addresses.

Storage for a Task Activation

The attribute “STORAGE_SIZE can be used in a length clause to specify the amount of stack space to be
reserved for the task type. Each task type object has a fixed size private task data section of 3216 bytes,
which contains information that is used by the Ada/800 tasking runtime.

When a length clause is not used to specify the amount of stack space, this private task data section is
included in the value returned by the attribute “STORAGE_SIZE. Thus, for task type with a default 8K
stack, the attribute "STORAGE_SIZE returns 11408.

When a length is used to specify the amount of stack space, this private task data section is not included in
the value returned by the attribute “STORAGE_SIZE. The value supplied in the length clause is used to
specify the amount of stack space that is allocated to the task object. Thus, each task will have a 3216
byte private data section allocated for the task, in addition to the task stack space. The attribute
"STORAGE_SIZE will only return the amount of stack space allocated.

In specifying a "STORAGE_SIZE for a task type, account must be taken of the stack requirements of the
Ada code as well as any interface or Ada runtime code that it calls. Each subprogram requires 48 bytes
of stack space for the frame marker and fixed argument area. Additional stack space is required for local
and temporary data, as well as for additional arguments. Alignment requirements for data must also be
considered when determining the amount of stack space required.

Minimum Size of a Task Stack

The task object will use 150 bytes of stack space in the first stack frame. Some additional stack space is
required to make calls into the Ada runtime. The smallest value that can be safely used for a task with
minimal stack needs is approximately 400 bytes. If the task object has local variables or if it makes calls
to other subprograms, the stack storage requirements will be larger. The actual amount of stack space
used by a task will need to be determined by trial and error. If a tasking program raises STORAGE_ERROR
or behaves abnormally, you should increase the stack space for the tasks.

Limitation on Length Clause for Derived Task Types
This storage size applies to all task objects of this type and any task type derived from this type. Thus, a

length clause that specifies the storage size is only allowed for the original task type definition and not for
any derived task type.

B-40

Implementation-Dependent Characteristics

Minimum Size of a Task Type or Subtype

The minimum size of a task type is always 32 bits.

Size of a Task Type
The size of a task type is 32 bits, the same as its minimum size.

The only size that can be specified for a task type in a size specification clause is its usual size (32 bits).

Alignment of a Task Type

A task type is aligned on a 4-byte boundary (32 bit or word aligned).

B-41

Implementation-Dependent Characteristics

F 4.7 Array Types
Layout of an Array
Each array is allocated in a contiguous area of storage units. All the components have the same size. A

gap may exist between two consecutive components (and after the last component). All the gaps are the
same size, as shown below.

.....

Component Gap Component Gap Component Gap

Array component size and pragma PACK

If the array is not packed, the size of each component is the size of the component type. This size 1s the
default size of the component type unless a size specification applies to the component type.

If the array is packed and the array component type is neither a record or array type, the size of the
component 1s the minimum size of the component type. The minimum size of the component type is used
even if a size specification applies to the component type.

Packing the array has no effect on the size of the components when the component type is a record or
array type.

Example

type A is array(1..8) of BOOLEAN;
-- The component size of A is the default size
-- of the type BOOLEAN: 8 bits.

type B is array(1..8) of BOOLEAN;

pragma PACK(B);

-- The component size of B is the minimum size
-- of the type BOOLEAN: 1 bit.

type DECIMAL DIGIT is range 0..9;
-- The default size for DECIMAL DIGIT is 8 bits
-- The minimum size for DECIMAL DIGIT is 4 bits

type BCD_NOT_PACKED is array(1..8) of DECIMAL_DIGIT;
-- The component size of BCD_NOT_PACKED is the default
-- size of the type DECIMAL DIGIT: 8 bits.

type BCD_PACKED is array(1..8) of DECIMAL_DIGIT;
pragma PACK(BCD_PACKED);

-- The component size of BCD_PACKED is the minimum
-- size of the type DECIMAL DIGIT: 4 bits.

Implementation-Dependent Characteristics

Array Gap Size and Pragma PACK

If the array type is not packed and the component type is a record type without a size specification clause,
the compiler may choose a representation for the array with a gap after each component. Inserting gaps
optimizes access to the array components. The size of the gap is choosen so that the each array component
begins on an alignment boundary.

If the array type is packed, the compiler will generally not insert a gap between the array components. In
such cases, access to array components can be slower because the array components will not always be
aligned correctly. However, in the specific case where the component type is a record and the record has
a record representation clause specifying an alignment, the alignment will be honored and gaps may be
inserted in the packed array type.

Example
type R is
record
K : INTEGER; -- Type Integer is word aligned.
B : BOOLEAN; -- Type Boolean is byte aligned.

end record;
-- Record type R is word aligned. Its size is 40 bits.

type A is array(1..10) of R;

-- A gap of three bytes is inserted after each array component in
-- order to respect the alignment of type R.

-- The size of array type A is 640 bits.

type PA is array(1..10) of R;

pragma PACK(PA);

-- There are no gaps in an array of type PA because
-- of the pragma PACK statement on type PA.

-- The size of array type PA is 400 bits.

type NR is new R;
for NR'SIZE use 40;

type B is array(1..10) of NR;

-- There are no gaps in an array of type B because
-- of the size specification clause on type NR.

-- The size of array type B is 400 bits.

B-43

Implementation-Dependent Characteristics

Size ot an Array Type or Subtype

The size of an array subtype is obtained by multiplying the number of its components by the sum of the
size of the component and the size of the gap.

The size of an array type or subtype cannot be computed at compile time if any of the following are true:

o if the array has non-static constraints or if it is an unconstrained type with non-static index subtypes
(because the number of components can then only be determined at run time)

e if the components are records or arrays and their constraints or the constraints of their subcomponents
are not static (because the size of the components and the size of the gaps can then only be determined
at run time). Pragma PACK is not allowed in this case.

As indicated above, the effect of a pragma PACK on an array type is to suppress the gaps and to reduce the
size of the components, if possible. The consequence of packing an array type is thus to reduce its size.

Array paciking ic fuily implemented by the Ada/800 compiler with this limitation: if the components of
an array type are records or arrays and their constraints or the constraints of their subcomponents are not
static, the compiler ignores any pragma PACK statement applied to the array type and issues 2 warning
message.

A size specification applied to an array type has no effect. The only size that the compiler will accept in
such a length clause is the usual size. Nevertheless, such a length clause can be used to verify that the
layout of an array is as expected by the application.

Alignment of an Array Type

If no pragma PACK applies to an array type and no size specification applies to the component type, the
array type is aligned on a 4-byte boundary (32 bit or word aligned).

If a pragma PACK applies to an array type or if a size specification applies to the component type (so that
there are no gaps), the alignment of the array type is as given in Table F-3.

Table F-3. Alignment and Pragma PACK— .

Component Component

(Normal (Alignment in Structure)

Alignment) Double-Hord Hord Half-Word Byte Bit
Double-Word Double-Word Word Half-Word Byte Bit
Word Word Word Half-Word Byte Bit
Half-HWord Half-Word Half-Word Half-Word Byte Bit
Byte Byte Byte Byte Byte Bit
Bit Bit Bit Bit Bit Bit

Implementation~-Dependent Characteristics

F 4.8 Record Types
Syntax (record representation clause)

tor record-type-name use
record [alignment-clause]
[component-clause]

end record;

Syntax (alignment clause)

at mod static-expression

Syntax (component clause)

record-component-name at static-expression
range static-expression .. static-expression ;

Layout of a Record

A record is allocated in a contiguous area of storage units. The size of a record depends on the size of its
components and the size of any gaps between the components. The compiler may add additional
components to the record. These components are called implicit components.

The positions and sizes of the components of a record type object can be controlled using a record
representation clause as described in the Ada RM, Section [3.4. If the record contains compiler generated
implicit components, their position also can be controlled using the proper component clause. For more
details, see "Implicit Components” in Section 4.8. In the implementation for the HP 9000 Series 800
Computer System, there is no restriction on the position that can be specified for a component of a record.
If the component is not a record or an array, its size can be any size from the minimum size to the default
size of its base type. If the component is a record or an array, its size must be the size of its base type.

B-45

Implementation-Dependent Characteristics

Example (Record with a representation clause):

type PSW_BIT is new BOOLEAN;
for PSW_BIT’SIZE use 1;

type CARRY_BORROW is airay (1..8) of FSW_BIT;
pragma PACK (CARRY_BORRON);

FIRST_BYTE : constant := O;
CABO_BYTE : constant := 1;
THIRD_BYTE : constant := 2;
SYSMASK_BYTE: constant := 3;
type PSW is
record

T : PSW_BIT;

H : PSW_BIT;

L : PSW_BIT;

N : PSW_BIT;

X : PSW_BIT;

B : PSW_BIT;

C : PSW_BIT;

V. : PSW_BIT;

M : PSW_BIT;

CB : CARRY_BORROW;

R : PSW_BIT;

Q : PSW_BIT;

P : PSW_BIT;

D : PSW_BIT;

I : PSW_BIT;

end record;

-- This type can be used to map the status register of
-- the HP-PA processor.

for PSW use
record at mod 4;
at FIRST_BYTE range
at SECOND_BYTE range
at SECOND_BYTE range
at SE.COND_BYTE range
at SECOND_BYTE range
at SECOND_BYTE range
at SECOND_BYTE range
at SECOND_BYTE range
at SECOND_BYTE range

B at CABO_BYTE range
at SYSMASK_BYTE range
at SYSMASK_BYTE range
at SYSMASK_BYTE range
at SYSMASK_BYTE range
at SYSMASK_BYTE range

end record;

-

O UOUODIBIOXT<ODMXZrT
NN A WONOOVHEWN—-O
N HWNNOOHEWN O~
e B WE P W P PG PP M P WD PP P P e

Implementation-Dependent Characteristics

In the above example, the record representation clause explicitly tells the compiler both the position and
size for each of the record components. The optional alignment clause specifies a 4-byte alignment for
this record. In this example every component has a corresponding component clause, although it is not
required. If one is not supplied, the choice of the storage place for that component is left to the compiler.
If component clauses are given for all components, including any implicit components, the record
representation clause completely specifies the representation of the record type and will be obeyed exactly
by the compiler.

Bit Ordering in a Component Clause

The HP Ada compiler for the HP 9000 Series 800 Computer System numbers the bits in a component
clause starting from the most significant bit. Thus, bit zero represents the most significant bit of an 8-bit
byte and bit seven represents the least significant bit of the byte.

Value used for SYSTEM.STORAGE_UNIT

The smallest directly addressable unit on the HP 9000 Series 800 Computer System 1s the 8-bit byte.
This is the vaiue used for SYSTEM.STORAGE _UNIT which is implicitly used in a component clause. A
component clause specifies an offset and a bit range. The offset in a component clause is measured in
units of SYSTEM.STORAGE_UNIT, which for the HP 9000 Series 800 Computer System is an 8-bit byte.

The compiler determines the actual bit address for a record component by combining the byte offset with
the bit range. There are several different ways to refer to the same bit address. In the following example,
each of the component clauses refer to the same bit address.

Example

COMPONENT at 0 range 16 .. 18;
COMPONENT at 1 range 8 .. 10;
COMPONENT at 2 range 0 .. 2;

Compiler-Chosen Record Layout

If no component clause applies to a component of a record, its size is the size of the base type. Its location
in the record layout is chosen by the compiler so as to optimize access to the component. That is, each
component of a record follows the natural alignment of the component’s base type. Moreover, the
compiler chooses the position of the components to reduce the number of gaps or holes in the record and
additionally to reduce the size of the record.

Because of these optimizations, there is no connection between the order of the components in a record
type declaration and the positions chosen by the compiler for the components in a record object.

B-47

Implementation-Dependent Characteristics

Change in Representation

It is not possible to apply a record representation clause to a derived record type. The compiler will use
the same storage representation for all records of the same base type. Thus, the compiler does not support
the "Change in Representation" as described in the Ada RM, Section 13.6.

Implicit Components

In some circumstances, access to a record object or to a component of a record object involves computing
information that only depends on the discriminant values or on a value that is known only at run time.
To avoid unnecessary recomputation, the compiler reserves space in the record to store this information.
The compiler will update this information whenever a discriminant on which it depends changes. The
compiler uses this information whenever the component that depends on this information is accessed.
This information is stored in special components called implicit components. There are three different
kinds of implicit components:

o Components that contain an offset value.
e Components that contain information about the record object.
e Components that are descriptors.

Implicit components that contain an offset value from the beginning of the record are used to access
indirect components. Implicit components of this kind are called offset components. The compiler
introduces implicit offset components whenever a record contains indirect components. These implicit
components are considered to be declared before any variant part in the record type definition. Implicit
components of this kind cannot be suppressed by using the pragma IMPROVE.

Implicit components that contain information about the record object are used when the record object or
component of a record object is accessed. Implicit components of this kind are used to make references to
the record object or record components more efficient. These implicit components are considered to be
declared before any variant part in the record type definition. There are two implicit components of this
kind: RECORD_SIZE and VARIANT_INDEX. Implicit components of this kind can be suppressed by using
the pragma IMPROVE.

The third kind of implicit components are descriptors that are used when accessing a record component.
The implicit component exists whenever the record has an array or record component which depends-on a
discriminant of the record. An implicit component of this kind is considered to be declared immediately
before the record component which it is associated with. There are two implicit components of this kind:
ARRAY_DESCRIPTOR and RECORD_DESCRIPTOR. Implicit components of this kind cannot be suppressed
by using the pragma IMPROVE.

NOTE

The -S option (Assembly Option) to the ada(?) command is useful for
finding out what implicit components are associated with the record type.
This option will detail the exact representation for all record types defined
in a compilation unit.

B-48

Implementation-Dependent Characteristics

Indirect Components

If the offset of a component cannot be computed at compile time, the compiler will reserve space in the
record for the computed offset. The compiler computes the value to be stored in this offset at run time.
A component that depends on a run time computed offset is said to be an indirect component, while other
components are said to be direct. '

A pictorial example of a record layout with an indirect component is shown below.

Record Component Name Size of Component
Offset

o] Component A 18 bits

2 —— Offset for Component D 16 bits

4 Component B 32 bits

6

8 Component C <Size known at run time>

10

12

14

16

L Storage for <Size known at run time>

Component D

In the above example, the component D has an offset that cannot be computed at compile time. The
compiler then will reserve space in the record to store the computed offset and will store this offset at run
time. The other components (A B, and C) are all direct components because their offsets can all be
computed at compile time.

Dynamic Components
If a record component is a record or an array, the size of the component may need to be computed at run

time and may depend on the discriminants of the record. These components are called dynamic
components.

B-49

Implementation-Dependent Characteristics

Example (Record with dynamic components):
type U_RNG is range 0..255;

type UC_ARRAY is array (U_RNG range <>) of INTEGER;

-~ The type GRAPH has two dynamic components: X and Y.

type GRAPH (X_LEN, Y_LEN: U_RNG) is

record
X : UC_ARRAY(1 . X_LEN); -- The size of X depends on X_LEN
Y : UC_ARRAY(1 .. Y_LEN); -- The size of Y depends on Y_LEN

end record;
type DEVICE is (SCREEN, PRINTER);
type COLOR is (GREEN, RED, BLUE);
Q : U_RNG;

-- The type PICTURE has two dynamic components: R and T.
type PICTURE (N : U_RNG; D : DEVICE) is
record
| R : GRAPH(N,N); =-- The size of R depends on N
| T : GRAPH(Q,Q); =-- The size of T depends on Q
case D is
when SCREEN =>
C : COLOR;
when PRINTER =>
null;
end case;
end record;

Any component that is placed after a dynamic component has an offset that cannot be evaluated at
compile time and is thus indirect. To minimize the number of indirect components, the compiler groups
the dynamic components and places them at the end of the record. Due to this strategy, the only indirect
components are dynamic components. However, all dynamic components are not necessarily indirect.
The compiler can usually compute the offset of the first dynamic component and thus it becomes a direct
component. Any additional dynamic components are then indirect components.

B-50

Implementation-Dependent Characteristics

A pictorial example of the data layout for the record type PICTURE is shown below.

Record D = SCREEN D = PRINTER
Offset N = <ANY> N = <ANY>
0 T’QOFFSET T OFFSET —_—
2 —— R’OFFSET R’OFFSET —
) N N
6 R“RECORD_DESCRIPTOR R“RECORD_DESCRIPTOR
8 D D
9 PICTURE "VARIANT _INDEX PICTURE "VARIANT _INDEX
10 Cc Start of R -~
11 <GAP> .
12 ! Start of R ces
Start of T -
L——— Start of T

Representation of the Offset of an Indirect Component

The offset of an indirect component is always expressed in storage units, which for the HP 9000 Series
800 Computer System are bytes. The space that the compiler reserves for the offset of an indirect
component must be large enough to store the maximum potential offset. The compiler will choose the size
of an offset component to be either an 8-, 16~ or 32-bit object. It is possible to further reduce the size
in bits of this component by specifying it in 2 component clause.

If C is the name of an indirect component, the offset of this component can be denoted in a component
clause by the implementation generated name C”OFFSET.

Example (Record representation clause for the type GRAPH)

tor GRAPH use
record

X_LEN at O range 0..7;

Y_LEN at 1 range 0..7;

X’OFFSET at 2 range 0..15;

end record;

-- The bit range range for the implicit component
-~ X“OFFSET could have been specified as 0..11
-- This would make access to X much slower

In this example we have used a component clause to specify the location of an offset for a dynamic
component. In this example the compiler will choose Y to be the first dynamic component and as such it
will have a static offset. The component X will be placed immediately after the end of component Y by
the compiler at run time. At run time the compiler will store the offset of this location in the field
X OFFSET. Any references to X will have additional code to compute the run time address of X, using the
X“OFFSET field. References to Y will be direct references.

B-51

Implementation-Dependent Characteristics

The Implicit Component RECORD__SIZE

This implicit component is created by the compiler whenever a record with discriminants has a variant
part and the discriminant that defines the variant part has a default expression (that is, a record type that
possibly could be unconstrained.) The component 'RECORD_SIZE contains the size of the storage space
required to represent the current variant of the record object. Note that the actual storage allocated for
the record object may be more than this.

The value of a RECORD_SIZE component may denote a number of bits or a number of storage units
(bytes). In most cases it denotes a number of storage units (bytes), but if any component clause specifies
that a component of the record type has an offset or a size that cannot be expressed using storage units,
the value designates a number of bits.

The implicit component RECORD_SIZE must be large enough to store the maximum size that the record
type can attain. The compiler evaluates this size, calls it MS, and considers the type of RECORD_SIZE to be
an anonymous integer type whose range is 0 .. MS

If R is the name of a record type, this implicit component can be denoted in a component clause by the
implementation generated name R"RECORD_SIZE.

The Implicit Component VARIANT __INDEX

This implicit component is created by the compiler whenever the record type has a variant part. It
indicates the set of components that are present in a record object. It is used when a discriminant check is
to be done.

Within a variant part of a record type, the compiler numbers component lists that themselves do not
contain a variant part. These numbers are the possible values for the implicit component
VARIANT_INDEX. The compiler uses this number to determine which components of the variant record
are currently valid.

Example (Record with a variant part):
type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION{(KIND : VEHICLE := CAR) is
record
SPEED : INTEGER;
case KIND is
when AIRCRAFT | CAR =>
WHEELS : INTEGER;
case KIND is

when AIRCRAFT => -= VARIANT_INDEX is 1
WINGSPAN : INTEGER;
when others => -- VARIANT_INDEX is 2
nuil ;
end case;
when BOAT => -- VARIANT_INDEX is 3
STEAM : BOOLEAN;
when ROCKET => == VARIANT_INDEX is 4
STAGES : INTEGER;
end case;

end record;

B-52

Implementation-Dependent Characteristics

In the above example, the value of the variant index indicates which of the components are present in the
record object; these components are summarized in the table below.

Variant Index Legal Components
1 KIND, SPEED, WHEELS, WINGSPAN
2 KIND, SPEED, WHEELS
3 KIND, SPEED, STEAM
4 KIND, SPEED, STAGES

The implicit component VARIANT_INDEX must be large enough to store the number of component lists
that do not contain variant parts. The compiler evaluates this size, calls it VS, and considers the type of
VARIANT_INDEX to be an anonymous integer type whose rangeis 0 .. VS.

If R is the name of a record type, this implicit component can be denoted in a component clause by the
implementation generated name R“VARIANT_INDEX.

The Implicit Component ARRAY _ DESCRIPTOR

An implicit component of this kind is associated by the compiler with each record component whose type
is an array that has bounds that depend on a discriminant of the record.

The structure and contents of the implicit component ARRAY_DESCRIPTOR are not described in this
manual. Nevertheless, if you are interested in specifying the location of a component of this kind in a
component clause, you can obtain the size of the component by supplying the -S option (Assembly Option)
to the ada(7) command.

If Cis the name of a record component that conforms to the above definition, this implicit component can
be denoted in a component clause by the implementation generated name C”ARRAY_DESCRIPTOR.

The Implicit Component RECORD__ DESCRIPTOR

An implicit component of this kind may be associated by the compiler when a record component is a
record type that has components whose size depends on a discriminant of the outer record.

The structure and content of the implicit component RECORD_DESCRIPTOR are not described in this
manual. Nevertheless, if you are interested in specifying the location of a component of this kind in a
component clause, you can obtain the size of the component by applying the -S option (Assembly Option)
to the ada(1) command.

If Cis the name of a record component that conforms to the above definition, this implicit component can
be denoted in a component clause by the implementation generated name C"RECORD_DESCRIPTOR.

Implementation-Dependent Characteristics

Suppression of implicit Components

Ada/800 provides the capability of suppressing the implicit components RECORD_SIZE and
VARIANT _INDEX from a record type. This can be done using an implementation defined pragma called
IMPROVE.

Syntax
pragma IMPROVE (TIME | SPACE , [ON =>] record_type_name);

The first argument specifies whether TIME or SPACE is the primary criterion for the choice of
representation of the record type that is denoted by the second argument.

If TIME is specified, the compiler inserts implicit components as described above. This is the default
behavior of the compiler. If SPACE is specified, the compiler only inserts a VARIANT_INDEX component
or a RECORD_SIZE component if a component clause for one of these components was supplied. If the
record type has no record representation clause, both components will be suppressed. Thus, a record
representation clause can be used to keep one implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a record representation
clause is allowed for this type.

Size of a Record Type or Subtype

The compiler generally will round up the size of a record type to a whole number of storage units (bytes).
If the record type has a component clause that specifies a record component that cannot be expressed in
storage units, the compiler will not round up and instead the record size will be expressed as an exact
number of bits.

The size of a constrained record type is obtained by adding the sizes of its components and the sizes of its
gaps (if any). The size of a constrained record will not be computed at compile time if:

e the record type has non-static constraints.

e a component is an array or record and its size cannot be computed at compile time (that is, if the
component has non-static constraints.)

The size of an unconstrained record type is the largest possible size that the unconstrained record type
could assume, given the constraints of the discriminant(s). If the size of any component cannot be
evaluated exactly at compile time, the compiler will use the maximum size that the component could
possibly assume to compute the size of the unconstrained record type.

A size specification applied to a record type has no effect. The only size that the compiler will accept in

such a length clause is the usual size. Nevertheless, such a length clause can be used to verify that the
layout of a record is as expected by the application.

B-54

Implementation-Dependent Characteristics

Size of an Object of a Record Type
A record object of a constrained record type has the same size as its base type.

A record object of an unconstrained record type has the same size as its base type if this size is less than or
equal to 8192 bytes. The size of the base type is the largest possible size that the unconstrained record
type could assume, given the constraints of the discriminant(s). If the size of the base type is larger than
8192 bytes, the record object only has the size necessary to store its current value. Storage space is then
allocated and deallocated dynamically based on the current value of the discriminant or discriminants.

Alignment ot a Record Subtype

When a record type does not have a record representation clause, or when a record type has a record
representation clause without an alignment clause, the record type is word aligned to the maximum
alignment required by any component of the record (8, 16, 32, or 64 bits). Any subtypes of a record type
also have the same alignment as their base type.

For a record type that has a record representation clause with an alignment clause, any subtypes of this
record type also obey the alignment clause.

An alignment clause can specify that a record type is byte, half-word, word, or double-word aligned
(specified as 1, 2, 4, or 8 bytes). Ada/800 does not support alignments larger than an 8§-byte alignment.

Implementation-Dependent Characteristics

F 5. Names for Predefined Library Units

The following names are used by the HP Ada Development System. Do not use any of these names for
your library-level Ada units.

ALSYS_ADA_RUNTIME Not available for use.

HIT

MATH_EXCEPTIONS # Names that you must avoid if you want
MATH_LIB access to packages that are provided by
SYSTEM_ENVIRONMENT # Hewlett-Packard.

The packages whose names are followed by * are available to be used in your programs. These packages
are documented in the Ada User's Guide.

B~56

Implementation-Dependent Characteristics

F 6. Address Clauses

Address Clauses tor Objects

An address clause can be used to specify an address for an object as described in the Ada RM, section 13. 5.
When such a clause applies to an object, no storage is allocated for it in the program generated by the
compiler. Storage for the object must be allocated for the object outside of the Ada program unit unless
the address is 2 memory mapped hardware address. The Ada program accesses the object by using the
address specified in the address clause.

An address clause is not allowed for task objects, nor for unconstrained records whose maximum size can
be greater than 8192 bytes.

Address Clauses for Subprograms

Address clauses for subprograms are not implemented in the current version of the Ada/800 compiler.

Address Clauses for Task Entries

Address clauses for task entries are not implemented in the current version of the Ada/800 compiler.

Address Clauses for Constants

Address clauses for constants are not implemented in the current version of the Ada/800 compiler.

Address Clauses for Packages

Address clauses for packages are not implemented in the current version of the Ada/ 800 compiler.

Address Clauses for Tasks

Address clauses for tasks are not im:pﬁémn the current version of the Ada/800 compiler.

B--57

Implementation-Dependent Characteristics

F 7. Restrictions on Unchecked Type Conversions

The following limitations apply to the use of UNCHECKED_CONVERSION:

e Unconstrained arrays are not allowed as target types.

o Unconstrained record types without defaulted discriminaiits are not allowed as target types.
e Access types to unconstrained arrays are not allowed as source or target types.

o If the source and target types are each scalar types, the sizes of the types must be equal.

o If the source and target types are each access types, the sizes of the objects which the types denote must
be equal.

If the source and the target types are each scalar or access types or if they are both composite types of the
same static size, the effect of the function is to return the operand.

In other cases, the effect of unchecked conversion can be considered as a copy.

"WARNING

When you do an UNCHECKED _ CONVERSION among types whose sizes
do not match, the code which is generated copies as many bytes as
necessary from the source location io fill the target. If the target is larger
than the source, the code copies all of the source plus whatever happens to
follow the source. Therefore, an UNCHECKED__ CONVERSION among
types whose sizes do not match can produce meaningless results, or can
actually cause a trap and abort the program (if these memory locations do
not actually exist).

B-58

Implementation-Dependent Characteristics

F 8. Implementation-Dependent Input-Output Characteristics

This section describes the I/O characteristics of Ada on the HP 9000 Series 800 computer. Ada handles
1/0 with packages, which are discussed in Section F 8.1. File types are described in Section F 8.1.3 and
the FORM parameter is discussed in Section F 8. 2.

F 8.1 Ada |I/0O Packages for External Files

In Ada, 1/0O operations are considered to be performed on objects of a certain f’le type rather than
directly on external files. An external file is anything external to the program that can produce a value
to be read or receive a value to be written. In Ada, values transferred to and from a given file must all be
of the same type.

Generally, the term file object refers to an Ada file of a certain file type, whereas a physical manifestation
is known as an external file. An external file is characterized by:

e Its NAME, which is a string defining a legal pathname for an external file on the underlying operating
system. HP-UX is the underlying operating system for Ada/800. The rules that govern legal
pathnames for external files in Ada programs are the same as those that govern legal pathnames in
HP-UX. See Section F 8. 1.2 for details.

e Its FORM, which allows you to supply implementation-dependent information about the external file
characteristics.

Both NAME and FORM appear explicitly in the Ada CREATE and QOPEN procedures. These two procedures
perform the association of the Ada file object and the corresponding external file. At the time of this
association, a FORM parameter is permitted to specify additional characteristics about the external file.

Ada I/0 operations are provided by several predefined standard packages. See the 4da RM, Section 14 for
more details. Table F-4 describes the standard predefined Ada 1/O packages.

Table F-4. Standard Predefined 1/0 Packages

Package ’ Description and Ada RM Location

SEQUENTIAL_IO A generic package for sequential files of a single element type. (Ada RM,
Section 14.2.3)

DIRECT_IO A generic package for direct (random) access files of a single element type.
(Ada RM, Section 14.2.5)

TEXT_IO A non-generic package for ASCII text files. (Ada RM, Section 14.3.10)

I0_EXCEPTIONS A package that defines the exceptions needed by the above three packages.
(4da RM, Section 14.5)

The generic package LOW_LEVEL_IOis not implemented.

B-59

Implementation-Dependent Characteristics

F 8.1.1 Implementation-Dependent Restrictions on 1/0 Packages

The upper bound for index values in DIRECT__IO and for line, column, and page numbers in TEXT__IO
1s:
COUNT“LAST = 2##31 -1

The upper bound for field widths in TEXT__IO is:

FIELD’LAST = 255

F 8.1.2 Correspondence between External Files and HP-UX Files

When Ada I/O operations are performed, data is read from and written to external files. Each external
file i1s implemented as a standard HP-UX file. However, before an external file can be used by an Ada
program, it must be associated with a file object belonging to that program. This association is achieved
by supplying the name of the file object and the name of the external file to the procedures CREATE or
OPEN of the predefined I/0O packages. Once the association has been made, the external file can be read
from or written to with the file object. Note that for SEQUENTIAL_IO and DIRECT_IO, you must first
instantiate the generic package to produce a non-generic instance. Then you can use the CREATE or OPEN
procedure of that instance. The example at the end of this section illustrates this instantiation process.

The name of the external file can be either of the following:

e an HP-UX pathname
e a null string (for CREATE only)

The éxception USE_ERROR is raised by the procedure CREATE if the specified external file cannot be
created. The exception USE_ERROR is also raised by the procedure OPEN if you have insufficient access
rights to the file.

If the name is a null string, the associated external file is a temporary file created using the HP-UX
facility tmpnam(3). This external file will cease to exist upon completion of the program.

When using OPEN or CREATE, the Ada exception NAME_ERROR is raised if any path component exceeds 255
characters or if an entire path exceeds 1023 characters. This limit applies to path components and the
entire path during or after the resolution of symbolic links and context-dependent files (CDFs).

WARNING

The absence of NAME_ ERROR does not guarantee that the path will be
used as given. During and after the resolution of symbolic links and
context-dependent files (CDFs), the underlying file system may truncate an
excessively long component of the resulting pathname. For example, a
fifteen character file name used in an Ada program OPEN or CREATE
call will be silently truncated to fourteen characters without raising
NAME _ERROR by an HP-UX file system that is configured for "short
filenames",

B-60

Implementation~Dependent Characteristics

If an existing external file i1s specified to the CREATE procedure, the contents of that file will be deleted.
The recreated file is left open, as 1s the case for a newly created file, for later access by the program that
made the call to create the file.

Examble

-- This example creates a file using the generic package DIRECT_IO.
-- It also demonstrates how to close a file and reopen it using a
-- different file access mode.

with DIRECT_IO;

with TEXT_I0;

procedure RTEST is

-~ here we instantiate DIRECT_IO on the type INTEGER

package INTIO is new DIRECT_IO (INTEGER);

IFILE : INTIO.FILE_TYPE; -- Define a file object for use in Ada
IVALUE : INTEGER := 0; -- Ordinary integer object
begin

INTIO.CREATE (FILE => IFILE, -- Ada file is IFILE
MODE => INTIO.OUT_FILE, -- MODE allows WRITE only
NAME => "myfile" -- file name is "myfile"

)s
TEXT_IO.PUT_LINE ("Created : " &

INTIO.NAME (IFILE) &

", mode is " &

INTIO.FILE_MODE'IMAGE(INTIO.MODE (IFILE)));
INTIO.WRITE (IFILE, 21); -- Write the integer 21 to the file
INTIO.CLOSE (FILE => IFILE); -- Close the external file

TEXT_IO.PUT_LINE| ‘Closed file");

INTIO.OPEN (FILE => IFILE, -- Ada file is IFILE
MODE => INTIO.INOUT_FILE, -- MODE allows READ and WRITE
NAME => "myfile" -- file name is "myfile"
B
TEXT_IO.PUT_LINE ("Opened : " &

INTIO.NAME (IFILE) &
", mode is " &
INTIO.FILE_MODE'IMAGE(INTIO.MODE (IFILE)));

INTIO.READ (IFILE, IVALUE); -- Read the first item
TEXT_IO.PUT_LINE("Read from file, IVALUE = " & INTEGER’IMAGE(IVALUE));
INTIO.WRITE (IFILE, 65); -- Write the integer 65 to the file
TEXT_IO.PUT_LINE("Added an Integer to : " & INTIO.NAME (IFILE));

B-61

Implementation-Dependent Characteristics

INTIO.RESET (FILE => IFILE, -- Set MODE to allow READ only
MODE => INTIO.IN FILE, -- and move to the begining
)3 -- of the file.

-~ (IFILE remains open)

TEXT_10.PUT_LINE ("Reset : " &
INTIO.NAME (IFILE) &
", mode is " &
INTIO.FILE_MODE'IMAGE(INTIO.MODE (IFILE)));

while not INTIO.END OF FILE(IFILE) loop
INTIO.READ (IFILE, IVALUE);
TEXT_IO.PUT_LINE("Read from file, IVALUE = " &
INTEGER“IMAGE (IVALUE))
end loop;

TEXT_IO.PUT_LINE("At the end of file, IFILE");

INTIO.CLOSE (FILE => IFILE);
TEXT_IO0.PUT_LINE("Close file");

end RTEST;

In the example above, the file object is IFILE, the external file name relative to your current working
directory is myfile, and the actual rooted path could be /PROJECT/myfile. Error or informational
messages from the Ada development system (such as the compiler or tools) may mention the actual rooted

path.

NOTE

The Ada/800 development system manages files internally so that names
involving symbolic links (see In(7)) are mapped back to the actual rooted
path. Consequently, when the Ada/800 development system interacts with
files involving symbolic links, the actual rooted pathname may be
mentioned in informational or error messages rather than the symbolic
name.

B-62

Implementation-Dependent Characteristics

F 8.1.3 Standard Implementation of External Files

External files have a number of implementation-dependent characteristics, such as their physical
organization and file access rights. It is possible to customize these characteristics through the FORM
parameter of the CREATE and OPEN procedures, described fully in Section F 8.2. The default of FORM is
the null string.

The following subsections describe the Ada/800 implementation of these three types of external files:
SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO files.

F 8.1.3.1 SEQUENTIAL __ IO Files

A SEQUENTIAL IO file is a sequence of elements that are transferred in the order of their appearance to
or from an external file. Each element in the file contains one object of the type that SEQUENTIAL_IO
was instantiated on. All objects in the file are of this same type. An object stored in a SEQUENTIAL_IO
file has exactly the same binary representation as an Ada object in the executable program.

The information placed in a SEQUENTIAL_IO file depends on whether the type used in the instantiation is
a constrained type or an unconstrained type.

For a SEQUENTIAL_IO file instantiated with a constrained type, each element is simply the object. The
objects are stored consecutively in the file without separators. For contrained types, the number of bytes
occupied by each element is the size of the constrained type and is the same for all elements. Files created
using SEQUENTIAL_IO on constrained types can be accessed as DIRECT_IO files at a later time. The
representation of both SEQUENTIAL_IO and DIRECT_IO files are the same when using constrained types.

For a SEQUENTIAL_IO file instantiated with an unconstrained type, each element is composed of three
parts: the size (in bytes) of the object is stored in the file as a 32-bit integer value, the object, and a few
optional unused trailing bytes. These unused trailing bytes will only be appended if the FORM parameter,
RECORD_UNIT was specified in the CREATE call. This parameter instructs the Ada runtime to round up
the size of each element in the file to be an integral multiple of the RECORD_UNIT size. The default
value for RECORD_UNIT is one byte, which means that unused trailing bytes will not be appended. The
principie use for the RECORD_UNIT parameter is in reading and writing external files that are in formats
that already use this convention. Files created using SEQUENTIAL_IO on unconstrained types cannot be
accessed as DIRECT_IO files at a later time. The representation of SEQUENTIAL I0 and DIRECT_IO files
are not the same when using an unconstrained type. See Section F 8.2.9.2 for more information on file
structure.

A SEQUENTIAL_IO file can be buffered. Buffering is selected by specifying a non-zero value for the
FORM parameter, BUFFER _SIZF. The I/O performance of an Ada program will be considerably improved
if buffering is used. By default no buffering takes place between the physical external file and the Ada
program. See Section F 8.2.4 for details on specifying a file BUFFER_SIZE.

F 8.1.3.2 DIRECT__ IO Files

A DIRECT_I0 file is a set of elements each occupying consecutive positions in a linear order. DIRECT_IO
files are sometimes refered to as random-access files because an object can be transferred to or from an
element at any selected position in the file. The position of an element in a DIRECT_IO file is specified
by its index, which is a2 number in the range | to (2**31)-1 of the subtype POSITIVE_COUNT. Each
element in the file contains one object of the type that DIRECT_IO was instantiated on. All objects in the

B-63

Implementation-Dependent Characteristics

file are of this same type. The obje:t stored in a DIRECT_IO file has exactly the same binary
representation as the Ada object in the executable program.

Elements within a DIRECT_IO file always have the same size. This requirement allows the Ada runtime
to easily and quickly compute the location of any element in a DIRECT_IO file.

For a DIRECT_IO file instantiated with a constrained type, the number of bytes occupied by each element
is the size of the constrained type. Files created using DIRECT_IO on consirained types can be accessed as
SEQUENTIAL_IO files at a later time. The representation of both DIRECT_IO and SEQUENTIAL_IO files
are the same when using a constrained type.

For DIRECT_IO files instantiated with an unconstrained type, the number of bytes occupied by each
element is determined by the FORM parameter, RECORD_SIZE. All of the unconstrained objects stored in
the file must have an actual size that is less than or equal to this size. The exception DATA_ERROR is
raised if the size of an unconstrained object is larger than this size. Files created using DIRECT_IO on
unconstrained types cannot be accessed as SEQUENTIAL_IO files at a later time. The representation of
DIRECT_IO and SEQUENTIAL IO files are not the same when using an unconstrained type. See Section
F 8.2.9.2 for more information on file structure.

If the file is created with the default FORM parameter attributes (see Section F 8.2), only objects of a
constrained type can be written to or read from a DIRECT_IO file. Although an instantiation of
DIRECT_IOis accepted for unconstrained types, the exception USE_ERROR is raised on any call to CREATE
or OPEN when the default value of the FORM parameter is used. You must specify the maximum
RECORD_SIZE for the unconstrained type.

A DIRECT_IO file can be buffered. Buffering is selected by specifying a non-zero value for the FORM
parameter, BUFFER_SIZE. The I/O performance of an Ada program will normally be considerably
improved if buffering is used. However, for a DIRECT_IO file that is accessed in a random fashion,
performance can actually be degraded. The buffer will always reflect a contiguous set of elements in the
file and if subsequent 1/O requests lie outside of the current buffer, the entire buffer will be updated.
This could cause performance to degrade if a large buffer is used and each 1/O request requires that the
buffer be updated. By default, no buffering takes place between the physical external file and the Ada
program. See Section F 8.2.4 for details on specifying a file BUFFER_SIZE.

F 8.1.3.3 TEXT__IO Files

A TEXT_IO file is used for the input and output of information in readable form. Each TEXT_IO file is
read or written sequentially as a sequence of characters grouped into lines and as a sequence of lines
grouped into pages. All TEXT_IO column numbers, line numbers, and page numbers are in the range | to
(2**31)-1 of subtype POSITIVE_COUNT. The line terminator (end-of-line) is physically represented by
the character ASCII.LF. The page terminator (end-of -page) is physically represented by a succession of
the two characters, ASCIT.LF and ASCII.FF, in that order. The file terminator {end-of-file) is
physically represented by the character ASCII.LF and is followed by the physical end of file. There is no
ASCII character that marks the end of a file. An exception to this rule occurs when reading from a
terminal device. In this case, the character ASCII.EQT (CTRL-D) is always used by the Ada runtime to
indicate the end-of-file. The Ada runtime does not use the EOF character currently defined for the
device (as set by stty(7), for example). See Section F 8.2.9.1 in this appendix for more information
about the structure of text files.

If you leave the control of line, page, and file terminators to the Ada runtime and use oniy TEXT_IO
subprograms to create and modify the text file, you need not be concerned with the above terminator
implementation details. However, you must not output the characters ASCII.LF or ASCII.FF when
using TEXT_IO.PUT operations because these characters would be interpreted as line terminators or as

B-64

Implementation-Dependent Characteristics

page terminators when the file was later read using TEXT_IO.GET. If you effect structural control by
explicitly outputting these control characters, it is your responsibility to maintain the integrity of the
external file.

If your text file was not created using TEXT_IO, your text file may not be in a format that can be
interpreted correctly by TEXT_IO. It may be necessary to filter the file or perform other modifications to
the text file before it can be correctly interpreted as an Ada text file. See Section F 8.2.9.1 for
information on the structure of TEXT_IO files.

The representation of a TEXT_IO file is a sequence of ASCII characters. It is possible to use DIRECT_IO
or SEQUENTIAL_IO to read or write a TEXT_IO file. The Ada type CHARACTER must be used in the
instantiation of DIRECT 10 or SEQUENTIAL_ 10. It is not possible to use DIRECT_IO or SEQUENTIAL_IO
on the Ada type STRING to read or write a TEXT 10 file.

A TEXT_IO file can be tuffered. Buffering is selected by specifying a non-zero value for the FORM
parameter, BUFFER_SIZE. The I/O performance of an Ada program will be considerably improved if
buffering is used. By default, no buffering takes place between the physical external file and the Ada
program. However, terminal input is line buffered by default. See Section F 8.2.4 and Section F 8.2.8
for details.

F 8.1.4 Default Access Protection of External Files

HP-UX provides protection of a file by means of access rights. These access rights are used within Ada
programs to protect external files. There are three levels of protection:

e User (the owner of the file).
e Group (users belonging to the owner’s group).
e Others (users belonging to other groups).

For each of these levels, access to the file can be limited to one or several of the following rights: read,
write, or execute. The default HP-UX external file access rights are specified by using the umask(7)
command (see umasx(7) and umask(2) in the HP-UX Reference.) Access rights apply equally to
sequential, direct, and text files. See Section F 8.2.3 on the FORM parameter for information about
specifying file permissions at the time of CREATE.

B-65

Implementation-Dependent Characteristics

F 8.1.5 System Level Sharing of External Files

Under HP-UX, several programs or processes can access the same HP-UX file simultaneously. Each
program or process can access the HP-UX file either for reading or for writing. Although HP-UX can
provide file and record locking protection using fentl(2) or lockf(2), Ada/800 does not utilize this
feature when it performs I/O on external files. Thus, the external file that Ada reads or writes is not
proiected from simultaneous access by non-Ada processes, or by another Ada program that is executing
concurrently. Such protection is outside the scope of Ada/800. However, you can limit access to a file by
specifying a file protection mask using the FORM parameter when you create the file. See Section F 8.2.3
for more information.

The effects of sharing an external file depend on the nature of the file. You must consider the nature of
the device attached to the file object and the sequence of I/O operations on the device. You also must
consider the effects of file buffering if you are attempting to update a file that is being shared.

For shared files on random access devices, such as disks, the data is shared. Reading from one file object
does not affect the file positioning of another file object, nor the data available to it. However, writing to
a file object may not cause the external file to be immediately updated; see Section F 8.2.5. 1, "Interaction
of File Sharing and File Buffering" for details.

For shared files on sequential devices or interactive devices, such as magnetic tapes or keyboards, the data
is no longer shared. In other words, a magnetic record or keyboard input character read by one I/O
operation is no longer available to the next operation, whether it is performed on the same file object or
not. This is simply due to the sequential nature of the device.

By default, file objects represented by STANDARD_INPUT and STANDARD_OUTPUT are preconnected to the
HP-UX streams stdin and stdout (see stdio(5)), and thus are of this sequential variety of file. The
HP-UX stream stderr is not preconnected to an Ada file but is used by the Ada runtime « 'stem for error
messages. An Ada subprogram called PUT_TO_STANDARD_ERROR 1is provided .a the package
SYSTEM_ENVIRONMENT which allows your program to output a line to the HP-UX strean stderr.

NOTE

The sharing of external files is system-wide and is managed by the HP-UX
operating system. Several programs may share one or more external files.
The file sharing feature of HP Ada using the FORM parameter SHARED,
which is discussed in Section F 8.2.5, is not system-wide, but is a file
sharing within a single Ada program and is managed by that program.

B-66

Implementation-Dependent Characteristics

F 8.1.6 1/0 Involving Access Types

When an object of an access type is specified as the source or destination of an I/O operation (read or
write), the 32-bit binary access value is read or written unchanged. If an access value is read from a file,
make sure that the access value read designates a valid object. This will only be the case if the access
value read was previously written by the same execution of the program that is reading it, and the object
which 1t designated at the time it was written still exists (that is, the scope in which it was allocated has
not been exited, nor has an UNCHECKED _DEALLOCATION been performed on it). A program may execute
erroneously or raise PROGRAM_ERROR if an access type read from a file does not designate a valid object.
In general, I/0 involving access types is strongly discouraged.

F 8.1.7 1/0 Involving Local Area Networks

This scction assumes knowledge of both remote file access and networks. It describes Ada program [/O
involving these two Local Area Network (LAN) services available on the Series 800 computers:

e RFA systems: remote file access using the NS/9000 network services software.

+*
e NFS systems: remote file access using the NFS network services software.

The Ada programs discussed here are executed on a local (host) computer. These programs access or create
files on a remote system, which is connected to a mass storage device not directly connected to the host
computer. The remote file system can be mounted and accessed by the host computer using RFA or NFS
LAN services. RFA systems are described in the manuals Using Network Services and Installing and
Administering Network Services. NFS systems are described in the manuals Using NFS Services and
Installing and Administering NFS Services.

Note that Ada I/O can be used reliably across local area networks using RFA only if the network special
files representing remote file systems are contained in the directory /net, as is customary on HP-UX
systems. See the HP-UX System Administrator Manual for more details.

+*
NFS is a trademark of Sun Microsystems, Inc.

B-67

Implementation-Dependent Characteristics

F 8.1.7.1 RFA Systems

Properly specified external files can be created or accessed reliably from Ada programs across the LAN on
RFA systems. You can create or access a file only if an RFA connection exists to the remote file system
at the time your Ada program is executed. The example below illustrates remote file access and use.

In this example, a remote network connection to a system cezanne is assumed. This connection could
have been made by typing the following (where $ is the shell prompt):

$ netunam /net/cezanne user_name:
Password: user_passwd

$

Example

with DIRECT_IO;
procedure LANTEST is

-- instantiate the generic package DIRECT_IO
-- for files whose component type is INTEGER.
package TESTIO is new DIRECT__IO(INTEGER);

REMOTE_FILE : TESTIO.FILE TYPE; -- Define a file object for use in Ada.

WVALUE : INTEGER := 35;
RVALUE : INTEGER := -1;
bagin

-- create a remote file

TESTIO.CREATE (FILE => REMOTE_FILE,
MODE => TESTIO.OUT_FILE, -- Access mode allows WRITE
NAME => "“/net/cezanne/project/test.file");

-- Write an integer (35) to the file
TESTIO.WRITE (REMOTE_FILE, WVALUE) ;

-- Reset the file pointer in the file and change o
-- the access mode to allow READ only
TESTIO.RESET (REMOTE_FILE, TESTIO.IN_FILE);

-- Read from the file, rvalue should now be (35)
TESTIO.READ (REMOTE_FILE, RVALUE);

-- Close the file

TESTIO.CLOSE (FILE => REMOTE_FILE);
end LANTEST;

B-68

Implementation-Dependent Characteristics

F 8.17.2 NFS Systems

If an Ada program expects to access or create a file on a remote file system using NFS LAN services, the
remote volumes that contain the file system must be mounted on the host computer prior to the execution
of the Ada program.

For example, assume that the remote system {(cezanne) exports a file system /project. /project is
mounted on the host computer as /ada/pro ject. Files in this remote file system are accessed or created
by references to the files as if they were part of the local file system. To access the file test.file, the
program would reference /ada/project/test.file on the local system. Note that test.file appears
as /project/test.file on the remote system. The netunam(7) command (from HP’s NS/9000) is not
used in NFS.

The remote file system must be exported to the local system before it can be locally mounted using the
mount (1m) command. .

F 8.1.8 Potential Problems with I/0O From Ada Tasks

In an Ada tasking environment on the HP 9000 Series 800, the Ada runtime must ensure that a file object
is protected against attempts to perform multiple simultaneous I/O operations on it. If such protection
was not provided, the internal state of the file object could become incorrect. For example, consider the
case of two tasks each writing to STANDARD_OUTPUT simultaneously. The internal values of a text file
object include information returned by TEXT_IO.COL, TEXT_IO.LINE, and TEXT_IO.PAGE functions.
These internal values are volatile and any [/O operations that change these values must be completed
before any other I/0O operations are begun on the file object. Thus, the file object i1s protected by the Ada
runtime for the duration of the 1/0O operation. If another task is scheduled and runs before the 1/0
operation has completed and this task attempts to perform I/O on the protected file object, the exception
PROGRAM_ERROR is generated at the point of the I/O operation. If this exception is not caught by the
task, the task will be terminated.

Note that the file protection provided by the Ada runtime is not the same as the protection provided by
the use of the SHARED attribute of the FORM parameter of CREATE or OPEN calls. The FORM parameter
either prohibits or allows multiple Ada file objects to share the same external file. In contrast, the file
protection provided by the Ada runtime prohibits the simultaneous sharing of the same Ada file object
between tasks. The SHARED attribute always deals with multiple Ada file objects.

The file protection provided by the Ada runtime will only be a problem when the same Ada file object is
used by different tasks. When each task uses a separate file object, it is not necessary to provide explicit
synchronization when performing I/0 operations. This is true even when the file objects are sharing the
same external file. However, for this case, you will need to consider the effects of the SHARED attribute
and/or file buffering.

It is your responsibility to utilize proper synchronization and mutual
exclusion in the use of shared resources. Note that shared access to a
common resource (in this case, a file object) could be achieved by a
rendezvous between tasks that share that resource. If you write a program
in which two tasks attempt to perform I/O operations on the same logical
file without proper synchronization, that program is erroneous. (See Ada
RAM, Section 9.11)

_

Implementation-Dependent Characteristics

F 8.1.9 1/0 involving Symbolic Links

Some caution must be exercised when using an Ada program that performs I/0 operations to files that
involve symbolic links. For more detail on the use of symbolic links to files in HP-UX, see In(1).

Creating a symbolic link to a file creates a new name for that file; that is, an alias for the actual file name
1s created. If you use the actual file name or its alias (that is, the name involving sym®clic links), Ada 1/0
operations will work correctly. However, the NAME function in the TEXT_IO, SEQUENTIAL_IO, and
DIRECT_IO packages will always return the actual rooted path of a file and not a path involving symbolic
links.

F 8.1.10 Ada 1I/O System Dependencies

Ada/800 has a requirement (see Ada RM, Section 14.2.1(21)) that the NAME function must return a
string that uniquely identifies the external file in HP-UX. In determining the unique file name, the Ada
runtime system may need to access directories and directory entries not directly associated with the
specified file. This is particularly true when the path to the file specified involves either NFS or
NS/9000 RFA remote file systems. This access involves HP-UX operating svstem calls that are
constrained by HP-UX access permissions and are subject to failures of the underlying file system, as well
as by network behavior.

WARNING

It is during the Ada/800 OPEN and CREATE routines that the unique
file name is determined for later use by the NAME function. If it was not
possible to determine the unique file name, the exception NAME _ ERROR,
USE__ERROR, or DEVICE__ERROR (as appropriate for the actual error
encountered) is raised by the call to OPEN or CREATE routines. The Ada
NAME function will only report this unique file name for the associated
file object after a successful call to OPEN or CREATE.

— If the underlying file system or network denies access (possibly due to a
failed remote file system) or the access permissions are improper, the
OPEN or CREATE call will raise an exception or for the case of a network
failure, the call might not complete until the situation is corrected.

For example, when opening a file, the Ada exception NAME_ERROR is raised if there are any directories in
the rooted path of the file that are not readable or searchable by the "effective uid" of the program. This
restriction applies to intermediate path components that are encountered during the resolution of
symbolic links.

Also, if access to an NFS "hard" mounted remote file system is lost (possibly due to a network failure),
subsequent OPEN or CREATE calls on a file whose actual rooted path contains the parent directory of the
NFS mount point might not complete until the NFS failure is corrected (whether or not the actual file
being accessed is on the failed NFS volume.)

Implementation-Dependent Characteristics

F 8.2 The FORM Parameter

For both the CREATE and OPEN procedures in Ada, the FORM parameter specifies the characteristics of the
external file involved.

F 8.2.1 An Overview of FORM Attributes
The FORM parameter is composed from a list of attributes that specify the following:

File protection
File buffering
File sharing
Appending
Blocking
Terminal input
File structuring
Terminal Input

F 8.2.2 The Format of FORM Parameters

Attributes of the FORM parameter have an attribute keyword followed by the Ada "arrow symbol” (=>),
and followed by a qualifier or numeric value.

The arrow symbol and qualifier are not always needed and can be omitted. Thus, the format for an
attribute specifier is

KEYWORD
or
KEYWORD => QUALIFIER

The general format for the FORM parameter is a string formed from a list of attributes with attributes
separated by commas. (FORM attributes are distinct from Ada attributes and the two are not related.)
The FORM parameter string is not case sensitive. The arrow symbol can be separated by spaces from the
keyword and qualifier. The two forms below are equivalent:

KEYWORD => QUALIFIER
KEYWORD=>QUALIFIER

In some cases, an attribute can have multiple qualifiers that can be presented at the same time. In cases
that allow multiple qualifiers, additional qualifiers are introduced with an underscore (__). Note that
spaces are not allowed between the additional qualifiers; only underscore characters are allowed.
Otherwise, 2 USE_ERROR exception is raised by CREATE. The twc examples that follow illustrate the
FORM parameter format.

The first example illustrates the use of the FORM parameter in the TEXT_IO.OPEN to set the file buffer
size.

B~71

Implementation-Dependent Characteristics

-~ Example of opening a file using the non-generic package TEXT_IO.
-~ This illustrates the use of the FORM parameter BUFFER_SIZE.
-- Note: "inpt_f‘ile" must exist, or NAME ERROR will be raised.

-

with TEXT_IO;
procedure STEST is

TFILE : TEXT_IO.FILE TYPE; --Define a file object for use in Ada

begin -- STEST

TEXT_IO.OPEN (FILE => TFILE, -- Ada file is TFILE
MODE => TEXT_IO.IN FILE, -- Access allows reading
NAME => "inpt_file", -- file name is "inpt_file"
FORM => "BUFFER_SIZE => 4096" -- Buffer Size is 4096 bytes
)3
end STEST;

The second example illustrates the use of the FORM parameter in TEXT_IO.CREATE. This example sets the
access rights of the owner (HP-UX file permissions) on the created file and shows multiple qualifiers being
presented at the same time.

TEXT_IO.CREATE (OUTPUT_FILE, TEXT_IO.OUT_FILE, OUTPUT_FI LE_NAME,

FORM=>"owner=>read_write_execute");

F 8.2.3 The FORM Parameter Attribute - File Protection
The file protection attribute is only meaningful for a call to the CREATE procedure.
File protection involves two independent classifications. The first classification specifies which user can

access the file and is indicated by the keywords listed in Table F-5.

Table F-5. User Access Categories

Category Grants Access To
OWNER Only the owner of the created file.
GROUP Only the members of a defined group.
WORLD Any other users.

Note that WORLD is similar to "others" in HP-UX terminology, but was used in its place because OTHERS is
an Ada reserved word.

B-72

Implementation-Dependent Characteristics

The second classification specifies access rights for each classification of user. The four general types of
access rights, which are specified in the FORM parameter qualifier string, are listed in Table F-6.

Table F-6. File Access Rights

Category Allows the User To
READ Read from the external file.
WRITE Write to the external file.
EXECUTE Execute a program stored in the external file.
NONE The user has no access rights to the external file. (This
qualifier overrides any prior privileges).

More than one access right can be specified for a particular file. Additional access rights can be indicated
by separating them with an underscore, as noted earlier. The following example using the FORM
parameter in TEXT_IO.CREATE sets access rights of the owner and other users (HP-UX file permissions)
on the created file. This example illustrates multiple qualifiers being used to set several permissions at the
same time.

TEXT_IO.CREATE (OUTPUT_FILE, TEXT_I0.0UT_FILE, OUTPUT_FILE_NAME,
FORM=>"owner=>read_write_execute, world=>none”);

Note that the HP-UX command umask(1!) may have set the default rights for any unspecified
permissions. In the previous example, permission for the users in the category GROUP were unspecified.
Typically, the default umask will be set so that the default allows newly created files to have read and
write permission (and no execute permission) for each category of user (USER, GROUP, and WORLD).

Consider the case where the users in WORLD want to execute a program in an external file, but only the
owner may modify the file. The appropriate FORM parameter is then:

WORLD => EXECUTE,
OWNER => READ_WRITE_EXECUTE
This would be applied as:

TEXT_IO0.CREATE (OUTPUT_FILE, TEXT_IO.OUT_FILE, OUTPUT_FILE_NAME,
FORM=>"world=>execute, owner=>read_write_execute");

Repetition of the same qualifier within attributes is illegal:
WORLD => EXECUTE_EXECUTE == NOT legal
But repetition of entire attributes is allowed:

WORLD => EXECUTE, WORLD => EXECUTE -- leqgal

Implementation-Dependent Characteristics

F 8.2.4 The FORM Parameter Attribute - File Buffering
The buffer size can be specified by the attribute:

BUFFER_SIZE => size__in__bytes
The default value for BUFFER_SIZE is O, which means no buffering. Using the file buffering attribute
will improve [/O performance by a considerable amount in most cases. If 1/O performance is a2 concern
for disk files, the attribute BUFFER_SIZE should be set to a value that is an integral multiple of the size
of a physical disk block. The size of a physical disk block can be found in <sys/param.h> and is 1024
bytes for the HP 9000 Series 300.

An example of the use of the FORM parameter in the TEXT_I0.OPEN to set the file buffer size is shown
below:

-- An example of creating a file using the non-generic package TEXT_IO.
-~ This illustrates the use of the FORM parameter BUFFER_SIZE.

with TEXT_IO;
procedure T_TEST is

BFILE : TEXT_IO.FILE TYPE; -- Define a file object for use by Ada

begin -- T_TEST

TEXT_I0.CREATE (FILE => BFILE, -- Ada file is BFILE
MODE => TEXT_IO.OUT_FILE, -- MODE is WRITE only
NAME => "txt_file", -- External file "txt_file"
FORM => "BUFFER_SIZE => 8192" -- Buffer size is 8192 bytes

)3
end T TEST;

F 825 The FORM Parameter Attribute - File Sharing

The file sharing attribute of the FORM parameter allows you to specify what kind of sharing is permitted
when multiple file objects access the same external file. This control over file sharing is not system-wide,
it is instead limited to a single Ada program. The HP-UX operating system controls file sharing at the
system level. See Section F 8. 1. § for information on system level file sharing between separate programs.

An external file can be shared; that is, the external file can be associated simultaneously with several

logical file objects created by the OPEN or CREATE procedures. The file sharing attributes forbids or limits
this capability by specifying one of the modes listed in Table F-7.

B-74

Implementation-Dependent Characteristics

Table F-7. File Sharing Attribute Modes

Mode Description

NOT_SHARED Indicates exclusive access. No other logical file can be
associated with the external file.

SHARED=>READERS Only logical files of mode IN can be associated with the
external file.

SHARED=>SINGLE _WRITER Only logical files of mode IN and at most one file with
mode OUT can be associated with the external file.

SHARED=>ANY No restrictions; this is the default.

A USE_ERROR exception is raised if either of the following conditions exists for an external file already
associated with at least one logical Ada file:

e The OPEN or CREATE call specifies a file sharing attribute different than the current one in effect for
this external file. Remember the attribute SHARED=>ANY is provided if the shared attribute is missing
from the FORM parameter.

e A RESET call that changes the MODE of the file and violates the conditions imposed by the current file
sharing attribute. (that is, if SHARED=>READERS is in effect the RESET call cannot change a reader
into writer)

The current restriction imposed by the file sharing attribute disappears when the last logical file linked to
the external file is closed. The next call to CREATE or OPEN can and does establish a new file sharing
attribute for this external file. See Section F 8. 1.8 for information about potential problems with I/0
from Ada tasks.

F 8.2.5.1 Interaction of File Sharing and File Buffering

For files that are not buffered (the default), muitipie I/O operations on an external file shared by several
file objects are processed in the order they occur. Each Ada I/O operation will be translated into the
appropriate HP__UX system call (read(2), write(2), creat(2), open(2), or close(2)) and the
external file will be updated by the HP-UX I/O runtime. Note that if file access is performed across a
network device, the external file may not be immediately updated. However, additional 1/0O operations on
the file will be queued and must wait until the original operation has completed. This allows multiple
readers and multiple writers for the external file.

For files that are buffered, multiple I/O operations each operate sequentially only within the buffer that
is associated with the file object and each file object has its own buffer. For write operations, this buffer
is flushed to the disk either when the buffer is full, or when the file index is positioned outside of the
buffer, or when the file is closed. The external file only reflects the changes made by a write operation
after the buffer is flushed to the disk. Any accesses to the external file that occur before the buffer is
flushed will not reflect the changes made to the file that exist only in the buffer.

B-75

Implementation-Dependent Characteristics

Due to this behavior, shared files should not be buffered if any write operations are to be performed on
this file. This would be the case for file objects of the mode OUT_FILE ur INOUT_FILE. Thus, when
using buffered files safely, no writers are allowed, but multiple readers are allowed.

File buffering is enabled by using the FORM parameter attributes at the time you open or create the file.
If file buffering 1s enabled for a file, you should also specify a file sharing attribute of either NOT_SHARED
or SHARED=>READERS to prevent the effects of file buffering and file sharing interfering with one
another. The Ada runtime will raise the exception USE_ERROR if any attempt is made to share the file or
to share and write the file, when the above file sharing attributes are provided as FORM parameters.

If the possibility of shared access exists in your Ada program for sequential devices or interactive devices,
you should specify a file sharing attribute of NOT_SHARED. This will prevent the negative effects of file
sharing on these kinds of devices.
F 8.2.6 The FORM Parameter - Appending to a File
The APPEND attribute can only be used with the procedure OPEN. Its format is:

APPEND
Any output will be placed at the end of the named external file.
Under normal circumstances, when an external file is opened, an index is set that points to the beginning
of the file. If the APPEND attribute is present for a sequential or text file, data transfer begins at the end
of the file. For a direct access file, the value of the index is set to one more than the number of records in

the external file.

The APPEND attribute is not applicable to terminal devices.

F 8.2.7 The FORM Parameter Attribute - Blocking
This attribute has two alternative forms:

BLOCKING
or
NON_BLOCKING

F 8.2.7.1 Blocking

If the blocking attribute is set, the read or write operation will cause the HP-UX process to block until
the read or write request is satisfied. This means that all Ada tasks are blocked from running until the
data transfer is complete.

The default for this attribute depends on the actual program. The default is BLOCKING for programs
without any task declarations and is NON_BLOCKING for a program containing tasks. This allows tasking
programs to take advantage of their parallelism in the presence of certain 1/O requests. There is no
advantage in specifying NON_BLOCKING for a non-tasking program because the program must wait for
the I/0 request to complete before continuing its sequential execution.

B-76

Implementation-Dependent Characteristics

F 8.2.7.2 Non-Blocking

The NON_BLOCKING attribute specifies that when a read request cannot be immediately satisfied, the Ada
runtime should schedule another task to run and retry the read operation later. This attribute 1s
currently only applicable for terminal devices and pipes. In the case of a pipe, a write request may also
cause the current task to be rescheduled, and another task will run while the pipe buffer is full. This
attribute sets the O_NDELAY flag in the HP-UX file descriptor and allows the HP-UX process to continue
running if there is no data available to be read from the terminal or pipe.

F 82.8 The FORM Parameter - Terminal Input

The terminal input attribute takes one of two alternative forms:
TERMINAL INPUT => LINES,
TERMINAL_INPUT => CHARACTERS,

Terminal input is normally processed in units of one line at a time. A process attempting to read from
the terminal as an external file is suspended until a complete line has been typed. At that time, the
outstanding read call (and possibly also later calls) is satisfied.

The LINES option specifies a line-at-a-time data transfer, which is the default case.

The CHARACTERS option means that data transfers character by character, and so a complete line does not
have to be entered before the read request can be satisfied. For this option, the BUFFER_SIZE must be
Zero.

When the CHARACTEPS option is specified, the ICANON bit is cleared in the ¢__Iflag component of the
HP-UX termio structure. This bit changes the line discipline for the terminal device. Be aware that the
line discipline statue is not maintained on a per file basis. Changing the line discipline for one terminal
file does effect other terminal files that are actually associated with the same physical terminal device.
See termio(7) for additional information.

The TERMINAL INPUT attribute is only applicable to Ada files objects other than STANDARD_INPUT. The
Ada runtime system uses the default TERMINAL_INPUT of LINES for the Ada file object
STANDARD_INPUT. The file name “/dev/tty" can be used with the appropriate FORM parameter to
achieve smgle character 1/0 on the same terminal device as STANDARD INPUT if STANDARD_INPUT has
not been redirected.

F 829 The FORM Parameter Attribute - File Structuring

This section describes the structure of Ada files. It also describes how to use the FORM parameter to effect
the structure of Ada files.

B-77

F 8.2.91 The Structure of TEXT__IO Files

Implementation-Dependent Characteristics

There 1s no FORM parameter to define the structure of text files. A text file consists of a sequence of bytes
containing ASCII character codes.

Table F~8 describes the use of the ASCII characters as Ada terminators in text files. The usage of Ada
terminators depends on the file’s mode (IN_FILE or OUT_FILE) and whether it is associated with a
terminal device or a mass-storage file.

Table F-8. Text File Terminators

File Type TEXT_IO Characters
Functions
Mass storage files END_OF _LINE ASCII.LF
Physical end of file
(IN_FILE) END_OF _PAGE ASCII.LF ASCII.FF
ASCII.LF Physical end of file
Physical end of file
END_OF _FILE ASCII.LF Physical end of file
Physical end of file
Mass storage files NEW_LINE ASCII.LF
(OUT_FILE) NEW_PAGE ASCII.LF ASCII.FF
ASCII.LF Physical end of file
CLOSE ASCII.LF Physical end of file
Terminal device END_OF _LINE ASCII.LF
ASCII.FF
(IN_FILE) ASCII.EOT
END_OF _PAGE ASCII.FF
ASCII.EOT
END_OF _FILE ASCII.EOT
Terminal device NEW_LINE ASCII.LF
(OUT_FILE) NEW_PAGE ASCII.LF ASCII.FF
CLOSE ASCII.LF

See Section F 8. 1. 3.3 for more information about terminators in text files.

Implementation-Dependent Characteristics

F 82.9.2 The Structure of DIRECT__I0 and SEQUENTIAL __ IO Files

This section describes use of the FORM parameter for binary (sequential or direct access) files. Two FORM
attributes, RECORD_SIZE and RECORD_UNIT, control the structure of binary files.

Such a file can be viewed as a seqaence or a set of consecutive RECORDS. The structure of a record is
[HEADER] OBJECT [UNUSED_PART]

A record is composed of up to three items:

1. A HEADER consisting of two fields (each of 32 bits)
e The length of the object in bytes.
e The length of the descriptor in bytes.

2. An OBJECT with the exact binary representation of the Ada object in the executable program, possibly
including an object descriptor.

3. An UNUSED_PART of variable size to permit full control of the record’s size.
The HEADER is implemented only if the actual parameter of the instantiation of the 1/O package is
unconstrained.
The file structure attributes take the form:
RECORD_SIZE => size__in_ bytes
RECORD_UNIT => size__in_ bytes

The attributes’ meaning depends on the object’s type (constrained or unconstrained) and the file access
mode (sequential or direct access).

There are four types of access that are possible:

Sequential access of fixed size, constrained objects.

Sequential access of varying size, unconstrained objects, with objects rounded up to a multiple of the
RECORD_UNIT size.

Direct access of fixed size, constrained objects.

Direct access of fixed size, unconstained objects, with a maximum size for the object.

B-79

Iimplementation-Dependent Characteristics

The consequences of the above are listed in Table F-9.

Table F-9. Structuring Binary Files with the FORM Parameter

Object Type File Access RECORD__UNIT RECORD _SIZE
Mode Attribute Attribute
Constrained Sequential I/O The RECORD_UNIT attribute If the RECORD_SIZE
Direct I/0 1s illegal. attribute is omitted, no
UNUSED_PART is
implemented. The default
RECORD_SIZE is the object’s
size.
If present, the RECORD_SIZE
attribute must specify a
record size greater than or
equal to the object’s s1ze.
Otherwise, the exception
USE_ERROR 1s raised.
Unconstrained Sequential I/O By default, the The RECORD_SIZE attribute
RECORD_UNIT attribute 1s 1llegal.
is one byte.
The size of the record is the
smallest multiple of the
specified (or default)
RECORD_UNIT that holds
the object and its length.
This is the only case where
different records in a file
can have different sizes.
Unconstrained Direct I/0 The RECORD_UNIT attribute | The RECORD_SIZE attribute
is illegal. has no default value, and if
a value is not specified, a
USE_ERROR is raised.
If you attempt to input or
output an object larger than
the given RECORD_SIZE, a
DATA_ERROR exception is
raised.

B-80

Implementation-Dependent Characteristics

F 9. The Ada/800 Development System and HP-UX Signals

The Ada/800 runtime in the HP 90Q0 Series 800 uses HP-UX signals to i nplement the following features

of the Ada language:

Ada task management
Ada delay timing

Ada exception handling

F 9.1 HP-UX Signails Reserved by the Ada Runtime

The HP-UX signals res::-ved and used by the Ada runtime are listed in Table F-10.

Table F-10. Ada/800 Signals

Signal Description

SIGALRM Used for delay in tasking programs.

SIGVTALRM Used for task scheduling (time slicing) in tasking programs.

SIGFPE Causes the exceptions CONSTRAINT _ERROR, NUMERIC_ERROR,
STORAGE_ERROR, or PROGRAM_ERROR.

SIGSEGV Causes the exception PROGRAM_ERROR.

SIGBUS Causes the exception PROGRAM_ERROR,

SIGILL Causes the exception PROGRAM_ERROR.

NOTE

The signals SIGSEGV, SIGBUS, and SIGILL are not reserved by the Ada
runtime. These signals are never deliberately produced by generated code
or by the Ada runtime to cause an exception to be raised. However, if due
to a programming error, access is attempted to misaligned or protected data
(causing SIGSEGV or SIGBUS) or an illegal instruction is executed (causing
SIGILL), PROGRAM_ERROR will be raised unless the application has
overridden the Ada runtime and specified some other action when receiving
these signals.

B-81

Implementation-Dependent Characteristics

NOTE |

The signals listed in Table F-10 will induce an exception even if non-Ada
code 1s executing at the time the signal is received. If interface code causes
one of these signals or is running when a signal is received from an outside
source, the Ada code that called the interface code will receive an Ada
exception.

| NoTE |

The SIGALRM and SIGVTALRM signals are not always generated by a tasking
program. SIGALRM is only generated if and when a delay statement is
encountered in a tasking program. SIGVTALRM is only generated if time
slicing was enabled when the program was bound (time slicing is enabled by
default and can be disabled with the binder option -W b,-s,0.) A
sequential (non-tasking) program does not use either the SIGALRM or
SIGVTALRM signals and they are not reserved by the Ada runtime in such
sequential programs.

B-82

Implementation-Dependent Characteristics

F 9.2 HP-UX Signals Used for Ada/800 Exception Handling

The Ada/800 implementation uses both signals and various procedure calls to raise exceptions. The Ada
runtime handlers for the signals that raise exceptions are set during the elaboration of the Ada runtime
system. Defining a new handler (or changing the signal action to SIG_DFL or SIG_IGN) for any of these
signals can subvert the normal exception handling mechanism of Ada and might result in an erroneous
runtime execution.

When your Ada code uses external interfaced subprograms, you must ensure that these external interfaced
subprograms do not redefine the signal handlers (or signal action) for any of the HP~UX signals reserved
by the Ada runtime.

The SIGFPE signal has a predefined meaning and is reserved by the Ada runtime for exception handling.
The SIGFPE signal is generated in your compiled Ada code whenever one of the predefined runtime
checks fails, including null access value checks. The runtime examines the context in which the signal
occurred and raises the appropriate one of CONSTRAINT ERROR, NUMERIC_ERROR, STORAGE_ERROR, or
PROGRAM_ERROR. An unexpected SIGFPE signal that was generated outside of Ada code or sent to the
process from an outside source will usually cause the exception PROGRAM_ERROR to be raised. If the
unexpected signal occurred in a context where the runtime believed a legitimate exception could have
occurred, that exception might be raised instead of PROGRAM_ERROR.

The signals SIGSEGV and SIGBUS are generated by access to an illegal or improperly aligned address.
Normally these signals will not be generated in an Ada program because access values are initialized to
nt are only assigned. legal and properly aligned values by generated code, and have runtime checks
performed on them to detect attempts to dereference a null access value (causing CONSTRAINT_ERROR via
SIGFPE as mentioned above.) Such illegal or improperly aligned addresses are usually produced by the
improper use of UNCHECKED_CONVERSION or are supplied by interfaced code. In response to receiving
SIGSEGV, the Ada runtime will raise PROGRAM _ERROR. An unexpected SIGSEGV signal that was
generated outside of Ada code or sent to the process from an outside source will also cause the exception
PROGRAM_ERROR to be raised.

The signal SIGILL is generated by the execution of an illegal instruction. Normally this signal will not be
generated in an Ada program because generated Ada code does not contain any illegal instructions.
Execution of an illegal instruction usually occurs in interfaced code. In response to receiving SIGILL, the
Ada runtime will raise PROGRAM_ERROR. An unexpected SIGILL signal that was generated outside of
Ada code or sent to the process from an outside source will also cause the exception PROGRAM_ERROR to be
raised.

[NoTE |

User code can define its own handler (or change the signal action) for
SIGSEGY, SIGBUS, and SIGILL without directly compromising the
operation of the Ada program. However, ignoring a synchronous instance
of one of these signals or continuing execution after handling a synchronous
instance of one of these signals is not advised without a thorough
understanding of the causes and continuation strategies for such signals
under HP-UX on HP-PA.

B-83

Implementation-Dependent Characteristics

[nNoTE |

The Ada/800 binder does not specify -z or -Z to the linker (1d(1)) to
control the system action on a dereference of a null pointer. Either the
1d(1) default or a user-specified value (via -W 1)} will therefore take
effect.

If Ada code is compiled with checks enabled (the default case), the Ada/800
runtime system will operate properly with either -z or -Z behavior
specified to the linker because Ada will generate software checks for null
pointer dereferencing.

If Ada code is compiled with pointer dereference checks disabled (using the
-C or -R compiler options or using pragma SUPPRESS), some null pointer
checking can be restored with essentially no runtime overhead by using the
-2 linker option.

If -z is specified, the system will send SIGSEGV if a null pointer is
dereferenced; the Ada/800 runtime system will map that signal to
PROGRAM_ERROR. However, the Ada software checks for null pointer
dereferencing are intended to handle all cases where a null pointer could
appear and will raise CONSTRAINT_ERROR if such a dereference occurs.
The SIGSEGV enabled by the -z linker option will only be sent when the
final result of an address calculation is the null pointer and the resulting
exception will be PROGRAM_ERROR instead of CONSTRAINT_ERROR.

F 9.3 HP-UX Signals Used for Ada Task Management

The HP-UX virtual alarm facility is used by the Ada runtime for task management. When the Ada
program contains tasks, the HP-UX signal SIGVTALRM is used to implement time slicing. Under a time
slicing algorithm, the Ada runtime allocates the available processor time among concurrent tasks. If the
Ada program does not contain tasks, it is a sequential program.

For the case of a sequential program or a tasking program with time slicing disabled, the HP-UX signal
SIGVTALARM is not reserved by the Ada runtime. For the case of a tasking program with time slicing
enabled, the HP-UX signal SIGVTALARM is reserved by the Ada runtime.

When your Ada code uses external interfaced subprograms, you must ensure that these external interfaced
subprograms do not redefine the signal handlers for any of the HP-UX signals reserved by the Ada
runtime. If you redefine a handler for SIGVTALRM and your Ada program is using task time slicing,
unpredictable program behavior will result.

B-84

Implementation-Dependent Characteristics

F 9.4 HP-UX Signais Used for Ada Delay Timing

The HP-UX signal SIGALRM is used by the Ada runtime to time delay statements in your Ada source
code in a tasking program. The maximum resolution of the timer is /100 of a second. Thus, all delay
statements are implemented using actual delays that are integral multiples of 1/100 of a second.
Non-zero delays for periods smaller than 1/100 of a second will delay for at least 1/100 of a second.

The signal SIGALRM is reserved by the Ada runtime if your tasking program contains any delay
statements. For a sequential program or a tasking program that contains no delay statements, the signal
SIGALRM is not reserved.

When your Ada code uses external interfaced subprograms you must ensure that these external interfaced
subprograms do not redefine the signal handlers for any of the HP-UX signals reserved by the Ada
runtime. If you redefine a handler for SIGALRM and your tasking Ada program is using defay
statements, unpredictable program behavior will result.

F 9.5 Protecting Interfaced Code from Ada’'s Asynchronous Signals

The two signals mentioned above (SIGALRM and SIGVTALRM) occur asynchronously. Because of this, they
may occur while your code is executing an external interfaced subprogram. For details on protecting your
external interfaced subprogram from adverse effects caused by these signals, see the section in the HP dda
User's Guide on "Interfaced Subprograms and Ada’s Use of Signals."

F 9.6 Programming in Ada With HP-UX Signals

If you intend to utilize signals in external interfaced subprograms, refer to Section F 11.7, "Potential
Problems Using Interfaced Subprograms.” This version of the product does not support the association of
an HP-UX signal such as SIGINT with an Ada procedure or a task entry. The signal must be handled
inside an external subprogram. The same cautions apply for this external subprogram as for any external
interfaced subprogram that might be interrupted by an unexpected signal.

B-85

Implementation-Dependent Characteristics

F 10. Limitations

This section hists limitations of the compiler and the Ada development environment.

F 10.1 Compiler Limitations

NOTE |

It is impossible to give exact numbers for most of the limits listed in this
section. The various language features may interact in complex ways to
lower the limits.

The numbers represent "hard” limits in simple program fragments devoid of
other Ada features.

Limit Description

155 Maximum number of characters in a source line.
253 Maximum number of characters in a string literal.
255 Maximum number of characters in an enumeration type element.

32767 In an enumeration type, the sum of the lengths of the IMAGE attributes of all
elements in the type, plus the number of elements in the type, must not exceed this
value.

2047 Maximum number of actual compilation units in a library.

32767 Maximum number of enumeration elements in a single enumeration type (this limit
is further constrained by the maximum number of characters for all enumeration
literals of the type).

2047 Maximum number of “created" units in a single compilation.
2%%31 -] Maximum number of bits in any size computation.
2048 Links in a library.
2048 Libraries in the INSTALLATION family (250 of which are reserved).
2047 Libraries in either the PUBLIC or a user defined family. (For more information, see

the Ada User's Guide, which discusses families of Ada libraries and the supported
utilities (tools) to manage them).

B-86

Implementation-Dependent Characteristics

Limit

255

1023

Description
Maximum number of tasks is limited only by heap size.

Maximum number of characters in any path component of a file specified for access
by the Ada compiler. If a component exceeds 255 characters, NAME_ERROR will be
raised.

The maximum number of characters in the entire path to a file specified for access
by the Ada compiler. If the size of the entire path exceeds 1023 characters,
NAME_ERROR will be raised.

The pathname limits apply to the entire path during and after the resolution of
symbolic links and context-dependent files (CDFs) if they appear in the specified
path.

The following items are limited only by overflow of internal tables (AIL or HLST tables). All internal
data structures of the compiler which previously placed fixed limits are now dynamically created.

Maximum number of identifiers in a unit. An identifier includes enumerated type
identifiers, record field definitions, and (generic) unit parameter definitions.

Maximum "“structure" depth. Structure includes the following: nested blocks,
compound statements, aggregate associations, parameter associations, subexpressions.

Maximum array dimensions. Set to maximum structure depth/10.#*
Maximum number of discriminants in a record constraint. *

Maximum number of associations in a record aggregate. *

Maximum number of parameters in a2 subprogram definition. *

Maximum expression depth. *

Maximum number of nested frames. Library-level unit counts as a frame.
Maximum number of overloads per compilation unit.

Maximum number of overloads per identifier.

* A limit on the size of tables used in overloading resolution can potentially lower this
figure. This limit is set at S0C. It reflects the number of possible interpretations of names
in any single construct under analysis by the compiler (procedure call, assignment
statement, and so on.) '

B-87

Implementation~-Dependent Characteristics

F 10.2 Ada Development Environment Limitations

The following limits apply to the Ada development environment (ada.umgr(1), ada. fmgr(1), Ada

tools).
Limit

200

200

S12

255

1023

Description

The number of characters in the actual rooted path of an Ada program LIBRARY or
FAMILY of libraries.

The number of characters in the string (possibly after expansion by an HP-UX shell)
specifying the name of an Ada program LIBRARY or FAMILY of libraries. This limit
applies to strings {pathname expressions) specified for a LIBRARY or FAMILY that you
submit to tools such as ada.mklib(1) or ada.umgr(1).

Maximum length of an input line for the tools ada. fmgr(1) and ada.umgr(1).

The maximum number of characters in any path component of a file specified for
access by an Ada development environment tool. If a component exceeds 2535
characters, NAME_ERROR will be raised.

The maximum number of characters in the entire path to a file specified for access
by an Ada program or an Ada development environment tool. If the size of the
entire path exceeds 1023 characters, NAME_ERROR will be raised.

The pathname limits apply to the entire path during and after the resolution of

symbolic links and context-dependent files (CDFs) if they appear in the specified
path.

B-88

Implementation-Dependent Characteristics

F 10.3 Limitations Affecting User-Written Ada Applications

The Ada/800 compiler and Ada development environment is expected to be used on versions of the
HP-UX operating system that support Network File Systems (NFS), diskless HP~UX workstations, long
filename file systems and symbolic links to files. To accomodate this diversity within a file system used in

both the development and target systems, the HP Ada compiler places some restrictions on the use of the
OPEN and CREATE on external files. This section describes those restrictions.

F 10.3.1 Restrictions Affecting Opening or Creating Files

Unless you observe the following restrictions on the size of path components and file names, the OPEN or
CREATE call will raise NAME_ERROR in certain situations.

F 10.3.1.1 Restrictions on Path and Component Sizes

The maximum number of characters in any path component of a file specified for access by an Ada
program is 253.

The maximum number of characters in the entire path to a file specified for access by an Ada program is
1023.

The pathname limits apply to the entire path during and after the resolution of symbolic links and
context-dependent files (CDFs) if they appear in the specified path.

F 10.3.1.2 Conditions that Raise NAME__ ERROR

When using OPEN and CREATE, the Ada exception NAME_ERROR will be raised if any path component
exceeds 255 characters or if the entire path exceeds 1023 characters.

When opening a file, the Ada exception NAME_ERROR will be raised if there are any directories in the

rooted path of the file that are not readable by the "effective uid" of the program. This restriction applies
to intermediate path components that are encountered during the resolution of symbolic links.

F 10.3.2 Restrictions on TEXT__I0O.FORM

The function TEXT_IO.FORM will raise USE_ERROR if it is called with either of the predefined files,
STANDARD_INPUT or STANDARD_OUTPUT.

B-89

Implementation-Dependent Characteristics

F 10.3.3 Restrictions on the Small of a Fixed Point Type

A length clause may be used to specify the value to use for “SMALL on a fixed point type. However, this
implementation requires that the value specified for "SMALL is a power of two. The compiler rejects a
compilation unit with a length clause specification with an IMPLEMENTATION RESTRICTION if
"SMALL is not an exact power of two.

F 10.3.4 Record Type Change of Representation

In the current version of the compiler, it is not possible to apply a record representation clause to a
derived record type. The compiler will use the same storage representation for all records of the same
base type. Thus, the compiler does not support the "Change in Representation" as described in the Ada
RM, Section 13.6.

F 10.3.5 Record Type Alignment Clause
A record type alignment clause can specify that a record type is byte, half ~word, word, or double~word

aligned (specified as 1, 2, 4, or 8 bytes). Ada/800 does not support alignments larger than a 8-byte
alignment.

F 10.3.6 Pragma INTERFACE on Library Level Subprograms
In the current version of the compiler, it is not possible to supply a pragma INTERFACE to a library-level

subprogram. Any subprogram that a pragma INTERFACE is applied to must be contained within an Ada
compilation unit, usually a package.

B-90

Implementation-Dependent Characteristics

F 11. Calling External Subprograms From Ada

In general, in Ada/800, parameters of external interfaced subprograms are passed according to the
standard HP-PA calling conventions (see HP-PA Procedure Calling Convention Reference Manual). This
convention is used by Hewlett-Packard for other language products on the HP 9000 Series 800 family of
computers. The languages described in this section are the HP implementations of HP-PA Assembler,
HP C, HP FORTRAN 77, and HP Pascal on the HP-UX Series 800 systems.

Ada parameter passing deviates from the standard HP-PA calling conventions when passing arrays and
records that occupy 64 bits or less. Ada passes all arrays and records by reference; therefore, arrays and
records that occupy 64 bits or less are not passed by copy as per the standard HP-PA calling convention.
Such arrays and records cannot be passed to interfaced subprograms that expect objects of these types to
be passed by copy (for example an HP C or HP Pascal subprogram that declares such parameter to be
passed by value). Such arrays and records can be passed to interfaced subprograms that expect a reference
to such an object to be passed.

When you specify the interfaced language name, that name is used to select the correct calling
conventions for supported languages. Subprograms written in HP-PA Assembler, HP C,
HP FORTRAN 77, and HP Pascal interface correctly with the Ada/800 subprogram caller. This section
contains detailed information about calling subprograms written in these languages. If the subprogram is
written in a language from another vendor, you must follow the standard calling conventions.

In the Ada/800 implementation of external interfaced subprograms, the three Ada parameter passing
modes (in, out, in out) are supported, with some limitations as noted below. Scalar and access parameters
of mode in are passed by value. All other parameters of mode in are passed by reference. Parameters of
mode out or in out are always passed by reference. (See Table F-11 and Figure F-1 for details.)

Table F~11, Ada Types and Parameter Passing Modes

Ada Type Mode Passed Mode Passed
By Value By Reference

SCALAR, in out, in out
ACCESS
All others except in, out, in out
TASK and FIXED
POINT
TASK and FIXED (not passed) (not passed)
POINT

The values of the following types cannot be passed as parameters to an external interfaced subprogram:

e Task types (4da RM, Section 9.1 and 9.2),
e Fixed point types (dda RM, Section 3.5.9 and 3.5.10).

B-91

Implementation-Dependent Characteristics
A composite type (an array or record type) is always passed by reference (as noted above). A component of
a composite type is passed according to its type classification (scalar, access, or composite).

Only scalar types (enumeration, character, Boolean, integer, or floating point) or access types are allowed
for the result returned by an external function subprogram. .

NOTE

There are no checks for consistency between the subprogram parameters (as
declared in Ada) and the corresponding external subprogram parameters.
Because external subprograms have no notion of Ada’s parameter modes,
parameters passed by reference are not protected from modification by an
external subprogram. Even if the parameter is declared to be only of mode
in (and not out or in out) but is passed by reference (that is, an array or
record type), the value of the Ada actual parameter can still be modified.

The possibility that the parameter’s actual value will be modified by an
external interfaced subprogram exists when that parameter is not passed by
value. Objects whose attribute “ADDRESS is passed as a parameter and
parameters passed by reference are not protected from alteration and are
subject to modification by the external subprogram. In addition, such
objects will have no run-time checks performed on their values upon
return from interfaced external subprograms.

Erroneous results may occur if the parameter values are altered in some
way that violates Ada constraints for the actual Ada parameter. The
responsibility is yours to ensure that values are not modified in external
interfaced subprograms in such a manner as to subvert the strong typing
and range checking enforced by the Ada language.

Be very careful to establish the exact nature of the types of parameters to
be passed. The bit representations of these types can be different between
this implementation of Ada and other languages, or between different
implementations of the Ada language. Pay careful attention to the size of
parameters because parameters must occupy equal space in the interfaced
language. When passing record types, pay particular attention to the
internal organization of the elements of a record because Ada semantics do
not guarantee a particular order of components. Moreover, Ada compilers
are free to rearrange or add components within a record. See Section F 4,
"Type Representation”, for more information.

B-92

Implementation~Dependent Characteristics

F 11.1 General Considerations in Passing Ada Types

Section F 11.1 discusses each data type in general terms. Sections F 11.2 through F 11.$ describe the
details of interfacing your Ada programs with external subprograms written in HP-PA Assembler, HP C,
HP FORTRAN 77, and HP Pascal. Section F 11.6 provides summary tables.

The Ada types are described in the following order:

e Scalar
e Integer
s Enumeration
s Boolean
e Character
s Real
Access
Array
Record
Task

F 11.1.1 Scalar Types

This section describes general considerations when you are passing scalar types between Ada programs and
subprograms written in a different HP language. The class scalar types includes integer, real, and
enumeration types. Because character and Boolean types are predefined Ada enumeration types, they are
also scalar types.

Scalar type parameters of mode in are passed by value. Scalar type parameters of mode in out or out are
passed by reference.

F 11.1.1.1 Integer Types

In Ada/800, all integers are represented in two’s complement form. The type SHORT_SHORT_INTEGER is
represented as an 8-bit quantity, the type SHORT_INTEGER is represented as a 16- bit quantlty, and the
type INTEGER is represented as a 32-bit quantity.

All integer types can be passed to interfaced subprograms. When an integer is used as a parameter for an
interfaced subprogram, the call can be made either by reference or by value. If passed by reference, the
value of the actual integer parameter is not copied or modified, but a 32-bit address pointer to the integer
value is passed. If passed by value, a copy of the actual integer parameter value is passed, based on its size,
as per the standard HP-PA calling convention. If passed in a register, it will be sign extended as required.
See Sections F11.2.1.}, FI11.3. 1.1, F11.4.1.1, and F 11.5.1.1 for details specific to interfaced
subprograms written in different languages.

Integer types may be returned as function results from external interfaced subprograms.

B-93

Implementation-Dependent Characteristics

F 11.1.1.2 Enumeration Types

Values of an enumeration type (4dda RM, Section 3.5.1) without an enumeration representation clause
(Ada RM, Section 13.3) have an internal representation of the value's position in the list of enumeration
literals defining the type. These values are non-negative. The first literal in the list corresponds to an
integer value of zero.

An enumeration representation clause can be used to further control the mapping of internal codes for an
enumeration identifier. See Section F 4.1, “Enumeration Types" for information on enumeration
representation clauses.

Values of enumeration types are represented internally as either an 8-, 16-, or 32-bit quantity (see
Section F 4.1, "Enumeration Types'). When an enumeration value is used as a parameter for an
interfaced subprogram, the call can be made either by reference or by value. If passed by reference, the
value of the actual enumeration parameter is not copied or modified, but a 32-bit address pointer to the
enumeration value is passed. If passed by value, a copy of the actual enumeration parameter value is
passed, based on its size, as per the standard HP-PA calling convention. If passed in a register, it will be
zero extended as required. See Sections F 11.2.1.1, F11.3. 1.1, F11.4.1.1, and F 11.5.1.1 for details
specific to interfaced subprograms written in different languages.

Enumeration types may be returned as function resuits from external interfaced subprograms.

F 11.1.1.3 Boolean Types

Values of the predefined enumeration type BOOLEAN are represented internally as an 8-bit quantity. The
Boolean value FALSE is represented by the 8-bit value 2#0000_000C# and the Boolean value TRUE is
represented by the 8-bit value 2#0000_0001#. This representation is the same as that of any two-valued
enumeration type whose size and internal code values have not been modified with a representation
clause.

Boolean values are passed the same as any other enumeration values.

Boolean types can be returned as function results from external interfaced subprograms.

F 11.1.1.4 Character Types

The values of the predefined enumeration type CHARACTER are represented as 8-bit values in a range O
through 127.

Values of the character type are passed as parameters and returned as function results as are values of any
other 8-bit enumeration type.

Character types may be returned as function results from external interfaced subprograms.

See Sections F11.2.1.1, F11.3.1.1, F1l.4.1.1, and F 11.5.1.1 for details specific to interfaced
subprograms written in different languages.

Implementation-Dependent Characteristics

F 11115 Real Types

Ada fixed point types and Ada floating point types are discussed in the following subsections.

Fixed Point Types

Ada fixed point types (4da RM, Section 3.5.9 and 3.5.10) are not supported as parameters or as results of
external interfaced subprograms.

Fixed point types cannor "2 returned as function results from external interfaced subprograms.

Floating Point Types

Floating point values {4da RM, Sections 3. 5.7 and 3.5.8) ir the HP implementation of Ada are of 32 bits
(FLOAT) or 64 bits (LONG_FLOAT). These two types conform to the [EEE Standard for Binary
Floating -Point Arithmetic.

The Ada type FLOAT is a 32-bit real type and is passed as a 32-bit real; this type is never extended to a
64-bit real. The Ada type LONG_FLOAT isa 64-bit real type and is passed as a 64-bit real.

Both floating point types can be passed to interfaced subprograms. When a floating point value is used as
a parameter for an interfaced subprogram, the call can be made either by refcrence or by value. If passed
by reference, the value of the actual floating point parameter is not copied or modified; a 32-bit address
pointer to the floating point value is passed. If passed by value, a copy of the actual floating point
parameter value is passed, based on its size, as per the standard HP-PA calling convention.

See Sections F 11.2.1.5, F11.3.1.5, F11.4. 1.5, and F11.5.1.5 for details specific to interfaced
subprograms written in different languages.

Floating point types may be returned as function results from external interfaced subprograms, with some
restrictions. See Section F 11.3.1.5, "Real Types and HP C Subprograms," for details.

B-95

Implementation~-Dependent Characteristics

F 11.1.2 Access Types

Values of an access type (Ada RM, Section 3. 8) have an internal representation which is the 32-bit address
of the underlying designated object.

An object’s address can be retrieved by applying the “ADDRESS attribute to the object. In the case of an
access type object, you may want either the address of the access type object or the address of the
underlying object that it points to. The underlying object’s address can be retrieved by applying the
attribute “ADDRESS in this way:

access_object.all’ADDRESS.

The use of .all implies that the “"ADDRESS operation applies to the contents of the access type object and
not to the access type object itseif.

An access type object has a value that is the address of the designated object. Therefore, when an access
type is passed by value, a copy of this 32-bit address is passed. If an access type object is passed by
reference, however, the address of the access type object itself is passed. This will effectively force
references to the designated object to be double indirect references. See Figure F-1 for details.

Figure F-1. Passing Access Types to Interfaced Subprograms

Access types may be returned as function results from external interfaced subprograms.

B-96

Implementation-Dependent Characteristics

Ada access types are pointers to Ada objects. In the implementation of HP Ada for the Series 800
Computer System, an address pointer value will always point at the first byte of storage for the designated
object and not at a descriptor for the object. This may not be the case for other implementations of the
Ada language and should be considered when Ada source code portability is an issue.

| wNoTE

If a i)ointer to an unconstrained array object is passed to interfaced code,
the information that describes the runtime constraints needs to be passed
explicitly.

- F 11.1.3 Array Types

In the HP implementation of Ada, arrays (Ada RM, Section 3.6) are always passed by reference. The value
passed is the address of the first element of the array. When an array is passed as a parameter to an
external interfaced subprogram, the usual checks on the consistency of array bounds between the calling
program and the called subprogram are not enforced. You are responsible for ensuring that the external
interfaced subprogram keeps within the proper array bounds. You may need to explicitly pass the upper
and lower bounds for the array type to the external subprogram.

The external subprogram should access and modify such an array in a manner appropriate to the actual
Ada type. Note that Ada will not range check the values that may have been stored in the array by the
external subprogram. In Ada range checks are only required when assigning an object with a constraint,
thus range checks are not performed when reading the value of an object with a constraint. If an
external subprogram modifies elements in an Ada array object, it has the responsibility to ensure that any
values stored meet the type constraints imposed by the Ada type.

Array element allocation, layout, and alignment are described in Section F 4.7, "Array Types."

Values of the predefined type STRING (dda RM, Section 3.6. 3) are unconstrained arrays and are passed by
reference as described above. The address of the first character in the string is passed. You may need to
explicitly pass the upper and lower bounds, or the length of the string to the external subprogram.
Returning strings from an external interfaced subprogram to Ada (such as OUT parameters) is not
supported. See Section F 11.3.3 for a complete example which shows how to return STRING type
information from interfaced subprograms.

Array types cannot be returned as function results from external interfaced subprograms. However, an
access type to the array type can be returned as a function result.

F 11.1.4 Record Types

Records (dda RM, Section 3.7) are always passed by reference in the HP implementation of Ada, passing
the 32-bit address of the first component of the record.

The external subprogram should access and modify such a record in a manner appropriate to the actual

Ada type. Note that Ada will not range check the values that may have been stored in the record by the
external subprogram. In Ada, range checks are only required when assigriing an object with a constraint,

B-97

Implementation-Dependent Characteristics

thus range checks are not performed when reading the value of an object with a constraint. If an
external subprogram modifies a component in an Ada record object, it has the responsibility to ensure that
any values stored meet the type constraints imposed by the Ada type for that component.

When interfacing with external subprograms using record types, it is recommended that you provide a
complete record representation clause for the record type. It is also your responsiblity to ensure that the
external subprogram accesses the record type in a manner that is consistent with the record representation
clause. For a complete description of record representation clauses see Section F 4. 8, "Record Types.”

If a record representation clause is not used, you should be aware that the individual components of a
record may have been reordered internally by the Ada compiler. This means that the implementation of
the record type may have components in an different order than the declarative order. Ada semantics do
not require a specific ordering of record components.

When interfacing record types with external subprograms, you may want to communicate some or all of
the offsets of individual record components. One reason for doing this would be to avoid duplicating the
record information in two places: once in your Ada code and again in the interfaced code. Software
maintance is often complicated by this practice.

The attribute “POSITION returns the offset of a record component with respect to the starting address of
the record. By passing this information to the external subprogram, you can avoid duplicating the record
type definition in your external subprogram.

The starting address of a record type can be passed to an external subprogram in one of three ways:

e the record object passed as a parameter (records are always passed by reference).
o the attribute "ADDRESS of the record object passed as a parameter.
e a value parameter that is of an access type to the record object.

Direct assignment to a discriminant of a record is not allowed in Ada (4da RM, Section 3.7.1). A
discriminant cannot be passed as an actual parameter of mode out or in out. This restriction applies
equally to Ada/800 subprograms and to external interfaced subprograms written in other languages. If
an interfaced program is given access to the whole record (rather than individual components), that code
should not change the discriminant value, because that would violate the Ada standara rules for
discriminant records.

In Ada/800, records are packed and variant record parts are overlaid; the size of the record is the longest
variant part. If a record contains discriminants or composite components having a dynamic size, the
compiler may add implicit components to the record. See Section F 4. 8, "Record Types," for a complete
discussion of these components.

Dynamic components and components whose size depends upon record discriminant values are
implemented indirectly within the record by using implicit “OFFSET components.

Record types cannot be returned as function results from external interfaced subprograms. However, an
access type to the record type can be returned as a function result.

F 11.1.5 Task Types

A task type cannot be passed to an external procedure or external function as a parameter in Ada/800. A
task type cannot be returned as a function result from an external function.

B-98

Implementation-Dependent Characteristics

F 11.2 Calling Assembly Language Subprograms

When calling interfaced assembly language subprograms, specify the named external subprogram in a
compiler directive:

pragma INTERFACE (ASSEMBLER, Ada_subprogram_name);

Note that the language type specification is ASSEMBLER and not ASSEMBLY. This description refers to the
HP assembly language for the HP-PA processor family upon which the Series 800 family is based.

Interfaced subprograms written in HP-PA Assembly Language that conform to the HP-PA procedure
calling conventions can be called from Ada with no special precautions. See the HP-PA Procedure Calling
Convention Reference Manual and the HP-PA Assembly Language Reference Manual for additional
information.

Only scalar types (integer, floating point, character, Boolean, and enumeration types) and access types are
allowed as result types for an external interfaced function subprogram written in HP-PA Assembly
Language.

F 11.2.1 Scalar Types and Assembly Language Subprograms

See Section F 11.1 for details.

F 11.2.1.1 Integer Typés and Assembly Language Subprograms

See Section F 11.1.1 for details.

F 11.2.1.2 Enumeration Types and Assembly Language Subprograms

See Section F 11. 1. 1.2 for details.

B-99

Implementation-Dependent Characteristics

F 11.2.1.3 Boolean Types and Assembly Language Subprograms

See Section F 11.1.1.3 for details.

F 11.2.1.4 Character Types and Assembly Language Subprograms

See Section F 11.1. 1.4 for details.

F 11.2.1.5 Real Types and Assembly Language Subprograms

See Section F 11.1.1. 5 for details.

F 11.2.2 Access Types and Assembly Language Subprograms

See Section F 11.1.2 for details.

F 11.2.3 Array Types and Assembly Language Subprograms

See Section F 11.1.3 for details.

F 11.2.4 Record Types and Assembly Language Subprograms

See Section F 11.1.4 for details.

B-100

Implementation-Dependent Characteristics

F 11.3 Calling HP C Subprograms
When calling interfaced HP C subprograms, the form
pragma INTERFACE (C, Ada_subprogram_name)
is used to identify the need to use the HP C parameter passing conventions.
To call the following HP C subroutine

void c_sub (val_parm, ref_parm)
int val_parm;
int #ref_parm;

{
)

Ada requires an interfaced subprogram declaration:

procedure C_SUB (VAL_PARAM : in INTEGER;
REF PARAM : in out INTEGER);
pragma INTERFACE (C, C_SuB);

In the above example we provided the Ada subprogram identifier C_SUB to the pragma INTERFACE. If a
pragma INTERFACE_NAME is not supplied, the HP C subprogram name is the name of the Ada subprogram
specified in the pragma INTERFACE, with all alphabetic characters shifted to lowercase.

Note that the parameter in the preceding example, VAL_PARAM, must be of mode in, to match the
parameter definition for val_parm found in the HP C subroutine. Likewise, REF_ PARAM must be of
mode in out to correctly match the C definition of #ref _parm. Also, note that the names for parameters
do not need to match exactly. However, the mode of access and the data type must be correctly matched,
but there is no compile-time or run-time check that can ensure that they match. It is your responsibility
to ensure their correctness.

You must use pragma INTERFACE_NAME whenever the HP C subprogram name contains characters not
acceptable within Ada identifiers or when the HP C subprogram name contains uppercase letter(s). You
can also use a pragma INTERFACE_NAME if you want your Ada subprogram name to be different than the
HP C subprogram name.

Note that the Ada/800 compiler does not automatically convert 32-bit real parameters to 64-~bit real
parameters. See Section F 11.3.1. 5, "Real Types and HP C Subprograms,” for details.

Only scalar types (integer, floating point, character, Boolean, and enumeration types) and access types are
allowed as result types for an external interfaced function subprogram written in HP C.

When binding and linking Ada programs with interfaced subprograms written in HP C, the libraries
libc.a libm.a, and libel.a are usually required. The Ada/800 binder will automatically provide the
-lm -lc¢ -1lcl directives to the linker. You are not required to specify "-1lm -1lc -lcl" when binding
and linking the Ada program on the ada({1) command line.

B-101

Implementation-Dependent Characteristics

For more information about C language interfacing, see the following manuals: HP-UX Concepts and
Tutorials: Programming Environment, HP-UX Concepts and Tutorials: Device 1/0 and User Interfacing,
and HP-UX Portability Guide. For general information about passing Ada types, see Section F 11. 1.

F 11.3.1 Scalar Types and HP C Subprograms

See Section F 11.1.1 for details.

F 11.3.1.1 Integer Types and HP C Subprograms

See Section F 11.1. 1.1 for details.

When passing integers by reference, note that an Ada SHORT SHORT INTEGER (eight bits) actually
corresponds with the HP C type char, because C treats this type as a numeric type.

Table F~12 summarizes the integer correspondence between Ada and C.

Table F-12. Ada/800 versus HP C Integer Correspondence

Ada HP C Bit Length
CHARACTER char 8
SHORT_SHORT_INTEGER char 8
SHORT_INTEGER short and short int 16
INTEGER int, long, and long int 32

All Ada integer types are allowed for the result returned by an external interfaced subprogram written in
HP C if care is taken with respect to differences in the interpretation of 8-bit quantities.

F 11.3.1.2 Enumeration Types and HP C Subprograms
See Section F 11.1.1.2 for details.

HP C enumeration types have the same representation as Ada enumeration types. They both are
represented as unsigned integers beginning at zero. In HP C, the size of an enumeration type is always 32
bits. When HP C passes enumeration types as value parameters, the values are zero extended to 32 bits.
Because Ada also performs the zero extension to 32 bits for enumeration type values, they will be in the
correct form for HP C subprograms. If a representation specification applies to the Ada enumeration
type, the value specified by the representation clause (not the “POS value) will be passed to the HP C
routine.

B-102

Implementation-Dependent Characteristics

F 11.3.1.3 Boolean Types and HP C Subprograms

See Section F 11.1. 1.3 for details.

Booleans are passed as other enumeration types are passed; see Section F 11. 3. 1.2 for details.

The type Boolean is not defined in HP C and the Ada/800 representation of Booleans does not directly
correspond to any type in HP C. However, an Ada Boolean could be represented in C with an appropriate
two-valued enumeration type or with an HP C integer type.

Boolean types are allowed for the result returned by an external interfaced subprogram written in HP C,
when care is taken to observe the internal representation.

F 11.3.1.4 Character Types and HP C Subprograms

See Section F 11.1. 1. 4 for details.

The Ada predefined type CHARACTER and any of its subtypes correspond with the type char in HP C.

Both the Ada and HP C types have the same internal representation and size. However, in Ada the type
CHARACTER is constrained to be within the 128 character ASCII standard.

F 11.3.1.5 Real Types and HP C Subprograms
This section discusses passing fixed point types and floating point types to HP C.
Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external subprograms. Ada fixed
point types cannot be returned as function results from interfaced subprograms written in HP C.

Floating Point Types
See Section F 11.1.1.5 for details.

When HP C is operating in compatibility mode (non-ANSI mode), the default calling convention for
passing parameters of floating point types by value requires that 32-bit single precision reals be converted
to 64-bit double precision reals before being passed. Additionally, the convention for functions returning
values of real types requires that a 64-bit double precision real be returned and converted to 32 bits if
the function was to returit a 32-bit real value.

When HP C is operating in ANSI conformant mode (or in compatibilily mode with the +r flag specified),
32-bit single precision reals are passed as parameters and are returned without being converted to or from
64-bit double precision.

Consequently, an interface parameter of type FLOAT or of a type derived from a type whose base type is
FLOAT, can only be passed directly to float parameters of HP C code compiled in ANSI conformant mode
or in compatibility mode with +r specified. An HP C interface subprogram that wants to return a value
of type FLOAT or of a type derived from a type whose base type is FLOAT to Ada, can only do so if the
HP C code was compiled in ANSI conformant mode or in compatibility mode with +r specified.

B-103

[—

Implementation-Dependent Characteristics

To interface with default compatibility mode HP C code (no +r specified), the type LONG_ FLOAT must
be used for all parameters of HP C type float and for all interface function results of HP C type float.

This limitation on passing the Ada type FLOAT only applies to parameters that are of the type FLOAT or
derived from a type whose base type is FLOAT. A composite type, such as an array or a record, can have
components that are of the type FLOAT. Also, the type FLOAT can be passed by reference to an external
HP C subprogram. The HP C calling convention does not require conversion in these cases in any
compiler mode.

F 11.3.2 Access Types and HP C Subprograms

See Section F [1.1.2 for details.

F 11.3.3 Array Types and HP C Subprograms
See Section F 11.1.3 for details.

Note that constrained Ada arrays with SHORT_SHORT_INTEGER or with 8-bit enumeration type
components can be most conveniently be associated with an HP C type of the form char[] or char #.

In Ada/800, the predefined type STRING is an unconstrained array type. It is represented in memory asa
sequence of consecutive characters without any gaps in between the characters. In HP C, the string type
is represented as a sequence of characters that is terminated with an ASCII null character (\000). You
will need to append a null character to the end of an Ada string if that string is to be sent to an external
interfaced HP C subprogram. When retrieving the value of an HP C string object for use as an Ada
string, you will need to dynamically allocate a copy of the HP C string. The HP C type char # is not
compatable with the unconstrained array type STRING that is used by Ada.

The examples on the following pages illustrate the handling of strings in HP C and in Ada/800. In the
first example, an Ada string is passed to HP C. Note the need to explicitly add a null character to the end
of the string so that string will be in the form that HP C expects for character strings.
The HP C routine:

/* Receiving an Ada string that has an ASCII.NULL appended to it

in this C routine
»/

void receive_ada_str (var_str)
char ®*var_str;
{

}

printf ("C: Received value was : %s \n", var_str);

B-104

Implementation-Dependent Characteristics

The Ada routine:

-- passing an Ada string to a C routine

procedure SEND_ADA_STR is

-- Declare an interfaced procedure that sends an
-- Ada-String to a C-subprogram

procedure RECEIVE_ADA_STR (VAR_STR : STRING);
pragma INTERFACE (C, RECEIVE_ADA_STR);

begin -- SEND_ADA_STR

-- Test the passing of an Ada string to a C routine
RECEIVE_ADA_STR ("Ada test string sent to C “ & ASCII.NUL);

end SEND_ADA_STR;

In the second example, a C string is converted to an Ada string. Note that Ada must compute the length
of the C string and then it must dynamically allocate a new copy of the C string.

The HP C routine:

/* Sending a C string value back to an Ada program #/

char #send _c_str()

{
char #local_string;
local_string = "a C string for Ada.";
return local string;

)

—_—_——

B-105

Implementation-Dependent Characteristics

The Ada routine:

- P e A e = e e e M MR e R M AR R e e L e M WS A W R e e e e N N W S R e e W e M e R e o

-- We import several useful functions from the package SYSTEM
-- the generic function FETCH

-- to read a character value given an address

-- the function "+"(address,integer)

-- to allow us to index consecutive addresses

-- (See section F 3.1, for the complete specification
-- of the package SYSTEM)

with SYSTEM;

with TEXT_I0;

procedure READ_C_STRING is

type C_STRING is access CHARACTER; -- This is the C type char #
type A_STRING is access STRING; -- The Ada type pointer to STRING

-- Declare an interfaced procedure that returns a pointer
-- to a C string (actually a pointer to a character)
function SEND_C_STR return C_STRING;

pragma INTERFACE (C, SEND_C_STR);

function FETCH_CHAR is
new SYSTEM.FETCH (ELEMENT_TYPE => CHARACTER); ,
-- Create a non-generic instantation of the function FETCH

function C_STRING_LENGTH (SRC : C_STRING) return NATURAL is
use SYSTEM; -- import the "+"(address,integer) operator
LEN ¢+ NATURAL := 03
START : SYSTEM.ADDRESS;
CUR : CHARACTER;
begin
START := SRC.all“ADDRESS;
loop
CUR := FETCH_CHAR (FROM => START + INTEGER (LEN));
exit when CUR = ASCII.NUL;
LEN := LEN + 13
end loop;
return LEN;
end C_STRING_LENGTH;

B-106

Implementation-Dependent Characteristics

function CONVERT_TO_ADA (SRC : C_STRING) return A_STRING is

use SYSTEM; -- import the "+"(address,integer) operator
A_STORAGE : A_STRING;
LEN : NATURAL;
C_START : SYSTEM.ADDRESS;
C_CUR : CHARACTER;
begin

LEN := C_STRING_LENGTH (SRC)

A_STORAGE := new STRING (1 .. LEN);

C_START := SRC.all"ADDRESS;

for INXin0O .. LEN - 1 loop
C_CUR := FETCH_CHAR (FROM => C_START + INTEGER (INX));
A_STORAGE.all (INX + 1) := C_CUR;

end loop

return A_STORAGE;

end CONVERT_TO_ADA;

begin -- Start of READ_C_STRING
declare
A_RESULT : A_STRING;
C_RESULT : C_STRING;

begin
-- Call the external C subprogram
C_RESULT := SEND_C_STR;
. ~- Convert to an access Ada STRING
A_RESULT := CONVERT_TO_ADA(C_RESULT);

~=- Print out the result.
TEXT_IO.PUT_LINE(A_RESULT.all)3
end;
end READ_C_STRING;

F 11.3.4 Record Types and HP C Subprograms

See Section F 11. 1.4 for details.

Ada records can be passed as parameters to external interfaced subprograms written in HP C if care is
taken regarding the record layout and access to record discriminant values. See Section F 4.8, "Record
Types," for information on record type layout.

B-107

Implementation-Dependent Characteristics

F 11.4 Calling HP FORTRAN 77 Language Subprograms

When calling interfaced HP FORTRAN 77 subprograms, the following form is used:
pragma INTERFACE(FORTRAN, Ada_subprogram_name)

This form is used to identify the need for HP FORTRAN 77 paranicter passing conventions.

To call the HP FQRTRAN 77 subroutine

Subroutine FSUB (Parm)
Integer*4 Parm

end
you need this interfaced subprogram declaration in Ada:

procedure FSUB (PARM : in out INTEGER);
pragma INTERFACE (FORTRAN, FS!B);

The external name specified in the Ada interface declaration can be any Ada identifier. If the Ada
identifier differs from the FORTRAN 77 subprogram name, pragma INTERFACE_NAME is required.

Note that the parameter in the example above is of mode in out. In HP FORTRAN 77, all user-declared
parameters are always passed by reference; therefore, mode in out or mode out must be used for scalar
type parameters. The HP FORTRAN 77 compiler might expect some implicit parameters that are passed
by value and not by reference. See Section F [[. 4.4, "String Types,” for details.

Only scalar types (integer, floating point, and character types) are allowed for the result returned by an
external interfaced function subprogram written in HP FORTRAN 77. Access type results are not
supported.

For more information, see the following manuals:

e HP FORTRAN 77 Reference Manual

e HP FORTRAN 77 Programmer's Guide

e HP FORTRAN 77 Quick Reference Guide

For general information about passing types to interfaced subprograms, see Section F 11. 1.

B-108

Implementation-Dependent Characteristics

F 11.4.1 Scalar Types and HP FORTRAN 77 Subprograms

FORTRAN expects all user-declared parameters to be passed by reference. Ada scalar type parameters
will only be passed by reference if declared as mode in out or out; therefore, no scalar type parameters to
a FORTRAN interface routine should be declared as mode in. No error will be reported by Ada, but you
will most likely get unexpected results.

All Ada scalar type parameters are passed by reference to FORTRAN external subprograms. Scalar type
parameters therefore must be declared as mode in out to be passed by reference.

F 11.4.1.1 Integer Types and HP FORTRAN 77 Subprograms
See Section F 11.1.1 for details.
Table F-13 summarizes the correspondence between integer types in Ada/800 and HP FORTRAN 77.

Table F-13. Ada/800 versus HP FORTRAN 77 Integer Correspondence

Ada HP FORTRAN 77 Bit Length
SHORT_SHORT_INTEGER BYTE 8
SHORT _INTEGER INTEGER*2 16
INTEGER INTEGER*4 32

The compatible types are the same for procedures and functions. Compatible Ada integer types are
allowed for the result returned by an external interfaced function subprogram written in
HP FORTRAN 77.

Ada semantics do not allow parameters of mode in out to be passed to function subprograms. Therefore,
for Ada to call HP FORTRAN 77 external interfaced function subprograms, each scalar parameter’s
address must be passed. The use of the supplied package SYSTEM facilitates this passing of the object’s
address. The parameters in an HP FORTRAN 77 external function must be declared as in the example on
the following page:

B-109

Implementation-Dependent Characteristics

-- Ada declaration

with SYSTEM;

VAL1 : INTEGER; -- a scalar type

VAL2 : FLOAT ; =-- a scalar type

RESULT : INTEGER;

tunction FTNFUNC (PARM1, PARM2 : SYSTEM.ADDRESS) return INTEGER;

The external function must be called from within Ada as follows:
RESULT := FTNFUNC (VAL?1 ADDRESS, VAL2 ADDRESS):

Because this has the effect of obscuring the types of the actual parameters, it is suggested that such
declarations be encapsulated within an inlined Ada body so that the parameter types are made visible. An
example follows:

-- specification of function to encapsulate
tunction FTNFUNC (PARM1 : INTEGER;

PARM2 : FLOAT) return INTEGER;
pragma INLINE (FTNFUNC);

with SYSTEM;
~- body of function to encapsulate
function FTNFUNC (PARM1 : INTEGER;
PARM2 : FLOAT) return INTEGER is
function FORTFUNC (P1, P2 : SYSTEM.ADDRESS) return INTEGER;
pragma INTERFACE (FORTRAN, FORTFUNC);

begin -- function FTNFUNC
return FORTFUNC (PARM1°ADDRESS, PARM2 ADDRESS);
end FTNFUNC;

In the previous example, the name of the inierfaced external function subprogram (written in
HP FORTRAN 77) is FORTFUNC. This name is declared in the following way:

Integer#4 FUNCTION FORTFUNC (I, X)
Integer#4 [
Real#q4 X

LAY

end

F 11.4.1.2 Enumeration Types and HP FORTRAN 77 Subprograms

The HP FORTRAN 77 language does not support enumeration types. However, objects that are elements
of an Ada’s enumeration type can be passed to an HP FORTRAN 77 integer type as the underlying
representation of an enumeration type.. The appropriate FORTRAN type (BYTE, INTEGER#2, or
INTEGER#4) should be chosen to match the size of the Ada enumeration type. If a representation
specification applies to the Ada enumeration type, the value specified by the representation clause (not the
’POS value) will be passed to the FORTRAN routine.

B-110

Implementation-Dependent Characteristics

F 11.4.1.3 Boolean Types and HP FORTRAN 77 Subprograms
See Section F 11.1. 1.3 for details.

An Ada/800 Boolean that has the default 8-bit size is compatible with the default mode
HP FORTRAN 77 type LOGICAL*1 both as a parameter and as a function result.

An Ada/800 Boolean type with a representation specification for a larger size (16 or 32 bits) is not
compatible with the larger sized HP FORTRAN 77 logical types (LOGICAL#2 or LOGICAL%*4). Such Ada
Booleans can be passed to the appropriately sized FORTRAN integer type (INTEGER#2 or INTEGER#*#4) and
treated as integers that have the value of “POS of the Ada Boolean value.

If the HP FORTRAN 77 routine is compiled with one of the HP FORTRAN 77 options that changes the
size or representation of logical types to other than the default, you will have to determine what Ada
types, if any, are compatible with the altered FORTRAN behavior by consulting the appropriate
FORTRAN documentation.

F 11.4.1.4 Character Types and HP FORTRAN 77 Subprograms
See Section F 11.1. 1.4 for details.

There 1s no one-to-one mapping between an Ada character type and any HP FORTRAN 77 character
type. An Ada character type can be passed to HP FORTRAN 77 or returned from HP FORTRAN 77
using one of several methods.

HP FORTRAN 77 considers all single character parametérs to be single-element character arrays. The
method that HP FORTRAN 77 uses to pass character arrays is described in Section F 11.4.4. The method
requires that an implicit value parameter be passed to indicate the size of the character array. Because
HP FORTRAN 77 uses this method for passing character types, it might be more convenient to convert
Ada character types into Ada strings and follow the rules that govern passing Ada string types to
HP FORTRAN 77.

An Ada/800 character that has the default 8-bit size can be passed to a default mode HP FORTRAN 77
parameter of type CHARACTER#1. This can be done if the interface declaration specifies the additional
size parameters that HP FORTRAN 77 implicitly expects and passes the constant value one (the size of the
character) when the HP FORTRAN 77 subprogram is called. See Section F 11.4.4 for an example of
implicit size parameters for strings; to pass an Ada character instead of a string, simply use the Ada
character type in the Ada interface declaration in place of the Ada string type and CHARACTER#1 in the
HP FORTRAN 77 declaration in place of the CHARACTER #(*). Note that the size parameter(s) are not
specified in the HP FORTRAN 77 subprogram declaration; they are implicit parameters that are expected
by the HP FORTRAN 77 subprogram for each character array (or character) type parameter.

An Ada/800 character type that has the default size cannot be returned from an HP FORTRAN 77
function that has a result type of CHARACTER#1 (it can be returned as a BYTE; see below for details).

An Ada/800 character type that has the default 8-bit size can also be passed to an HP FORTRAN 77
parameter of type BYTE without having to pass the additional length parameter. The BYTE will have the
value of “POS of the Ada character value.

An Ada/800 character type that has the default size can also be returned from an HP FORTRAN 77

function that has a return type of BYTE. The BYTE to be returned should be assigned the “POS value of
the desired Ada character.

B-111

Implementation-Dependent Characteristics

An Ada/800 character type with a representation specification for a larger size (16 or 32 bits) is not
compatible with any HP FORTRAN 77 character type. Such Ada characters can be passed to the
appropriately sized FORTRAN integer type (INTEGER#2 or INTEGER#*4) and treated as integers that have
the value of “POS of the Ada character value.

F 11.4.1.5 Real Types and HP FORTRAN 77 Subprograms

This section discusses passing fixed and floating point types to subprograms written in FORTRAN.

Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external interfaced subprograms
written in HP FORTRAN 77. Ada fixed point types cannot be returned as function results from external
interfaced subprograms written in HP FORTRAN 77.

Floating Point Types

See Section F 11.1.1.5 for details.

The Ada type FLOAT corresponds to the REAL#4 format in HP FORTRAN 77. The Ada type LONG_FLOAT
corresponds to the HP FORTRAN 77 type DOUBLE PRECISION (or REAL*8).

There is no Ada type that corresponds to the HP FORTRAN 77 type REAL*16.

F 11.4.2 Access Types and HP FORTRAN 77 Subprograms

Ada access types have no meaning in HP FORTRAN 77 subprograms because the types are address
pointers to Ada objects. The implementation value of an Ada parameter of type ACCESS may be passed to
an HP FORTRAN 77 procedure. The parameter in HP FORTRAN 77 is seen as INTEGER*4. The object
pointed to by the access parameter has no significance in HP FORTRAN 77; the access parameter value
itself would be useful only for comparison operations to other access values.

HP FORTRAN 77 can return an INTEGER#4 and the Ada program can declare an access type as the
returned value type (it will be a matching size, because in Ada/800, an access type is a 32-bit quantity.)
However, care should be taken that the returned value can actually be used by Ada in a meaningful
manner.

B-112

Implementation-Dependent Characteristics

F 11.4.3 Array Types and HP FORTRAN 77 Subprograms

See Section F 11. 1.3 for details.

Arrays whose components have an HP FORTR AN 77 representation can be passed as parameters between
Ada and interfaced external HP FORTRAN 77 subprograms. For example, Ada arrays whose components
are of types INTEGER, SHORT_INTEGER, FLOAT, LONG_FLOAT, or CHARACTER may be passed as parameters.

Array types cannot be returned as function results from external HP FORTRAN 77 subprograms.
However, an access type to the array type can be returned as a function result.

Arrays with multiple dimensions are implemented differently in Ada and
HP FORTRAN 77. To obtain the same layout of components in memory as
a given HP FORTRAN 77 array, the Ada equivalent must be declared and
used with the dimensions in reverse order.

Consider the components of a 2-row by 3-column matrix, declared in HP FORTRAN 77 as:

INTEGER#4 A(2,3) or INTEGER#4 A(1:2,1:3)

This array would be stored by HP FORTRAN 77 in the following order:
A(1,1), A(2,1), A(1,2), A(2,2), A(1,3), A(2,3)

This is referred to as storing in column major order; that is, the first subscript varies most rapidly, the
second varies next most rapidly, and so forth, and the last varies least rapidly.

Consider the components of a 2-row by 3-column matrix, declared in Ada as:

A : array (1..2, 1..3) ot INTEGER;
This array would be stored by Ada in the following order:

A(1,1), A(1,2), A(1,3), A(2,1), A(2,2), A(2,3)
This is referred to as storing in row major order; that is, the last subscript varies most rapidly, the next to
last varies next most rapidly, and so forth, while the first varies least rapidly. Clearly the two declarations
in the different languages are not equivalent. Now, consider the components of a 2-row by 3-column

matrix, declared in Ada as:

A : array (1..3, 1..2) of INTEGER;

B-113

Implementation~-Dependent Characteristics
Note the reversed subscripts compared with the FORTRAN declaration. This array would be stored by
Ada in the following order:
A(1,1), A(1,2), A(2,1), A(2,2), A(3,1), A(3,2)
If the subscripts are reversed, the layout would be
A(1,1), A(2,1), A(1,2), A(2,2), A(1,3), A(2,3)

which is identical to the HP FORTRAN 77 layout. Thus, either of the language declarations could declare
its component indices in reverse order to be compatible.

To illustrate that equivalent multidimensional arrays require a reversed order of dimensions in the
declarations in HP FORTRAN 77 and Ada, consider the following:

The Ada statement
FOO : array (1..10,1..5,1..3) ot FLOAT;
is equivalent to the HP FORTRAN 77 declaration:
REAL*4 F00(3,5,10)
or

REAL#4 FOO(1:2,1:5,1:10)

Both Ada and HP FORTRAN 77 store a one-dimensional array as a linear list.

F 11.4.4 String Types and HP FORTRAN 77 Subprograms

When a string item is passed as an argument to an HP FORTRAN 77 subroutine from within
HP FORTRAN 77, extra information is transmitted in hidden (implicit) parameters. The calling sequence
includes a hidden parameter (for each string) that is the actual length of the ASCII character sequence.
This implicit parameter is passed in addition to the address of the ASCII character string. The hidden
parameter is passed by value, not by reference.

These conventions are different from those of Ada. For an Ada program to call an external interfaced

suoprogram written in HP FORTRAN 77 with a string type parameter, you must explicitly pass the
length of the string object. The length must be declared as an Ada 32-bit integer parameter of mode in.

B-114

Implementation-Dependent Characteristics

The following example illustrates the declarations needed to call an external subroutine having a
parameter profile of two strings and one floating point variable.

procedure FTNSTR is

SA: STRING(1..6):= "ABCDEF";
SB: STRING(1..2):= "GH";
FLOAT_VAL: FLOAT:= 1.5;

LENGTH_SA, LENGTH_SB : INTEGER;

procedure FEXSTR (S1 : STRING; -- passed by reference
LS1 : in INTEGER ; -- len of string S1,
-- must be IN
F : inout FLOAT; -- must be IN OUT
S2 : STRING; -- passed by reference
LS2 : in INTEGER); -~ len of string S2,
-- must be IN

pragma INTERFACE (FORTRAN, FEXSTR);

begin -- procedure FTNSTR

LENGTH_SA := SA'LENGTH;

LENGTH_SB := SB'LENGTH;

FEXSTR (SA, LENGTH_SA, FLOAT_VAL, SB, LENGTH_SB);
end FTNSTR;

NOTE

Note that the string lengths immediately follow the corresponding string
parameter. The string lengths must be passed by value, not by reference.

The HP FORTRAN 77 external subprogram is the following:
SUBROUTINE FEXTR (St, r, S2)
CHARACTER #(%*) S1, S2
REAL#*4 r

END

NOTE

Ada/800 does not allow a string type (constrained or not) to be returned
from a function interfaced with HP FORTRAN 77. Thus, it is not possible
to declare an Ada external interfaced function that returns a result of type
STRING (type STRING is an object of type CHARACTER *(*) in
HP FORTRAN 77).

B-115

Implementation-Dependent Characteristics

F 11.4.5 Record Types and HP FORTRAN 77 Subprograms
See Section F 11. 1.4 for details.

Ada records may be passed as parameters to external interfaced subprogrims written in HP FORTRAN if
care is taken regarding the record layout and access to record discriminant values. See Section F 4.8,
"Record Types," for information on record type layout.

Record types are not allowed as function results in HP FORTRAN functions.

F 11.4.6 Other FORTRAN Types

The HP FORTRAN 77 types COMPLEX, COMPLEX*8, DOUBLE COMPLEX, and COMPLEX*16 have no direct
counterparts in Ada. However, it is possible to declare equivalent types using either an Ada array or an
Ada record type. For example, with type COMPLEX in HP FORTRAN 77, a simple Ada equivalent is a
user-defined record:

type COMPLEX is
record
Real : FLOAT;
Imag : FLOAT;
end record;

Similarly, an HP FORTRAN 77 double complex number could be reépresented with the two record
components declared as Ada type LONG_FLOAT.

While it is not possible to declare an Ada external function that returns the above record type, an Ada
procedure can be declared with an out parameter of type COMPLEX. The Ada procedure would then need
to interface with an HP FORTRAN 77 subroutine, which would pass the result back using an in out or
out parameter.

B-116

Implementation-Dependent Characteristics

F 11.5 Calling HP Pascal Language Subprograms
When calling interfaced HP Pascal subprograms, the form
pragma INTERFACE (Pascal, Ada_subprogram_name)
is used to identify the need to use the HP Pascal parameter passing conventions.
To call the following HP Pascal subroutine

module modp;
export
procedure p_subr (val_parm : integer;
var ref_parm : integer);

implement
procedure p_subr (val_parm : integer;
var ref_parm : integer);

begin

end;
end.

Ada would use the interfaced subprogram declaration:

procedure P_SUB (VAL_PARAM : in INTEGER;
REF_PARAM : in out INTEGER);
pragma INTERFACE (Pascal, P_SUB);

In the above example we provided the Ada subprogram identifier P_SUB to the pragma INTERFACE.

Note that the parameter in the example, VAL_PARAM, must be of mode in, to match the parameter
definition for val_parm found in the HP Pascal subroutine. Likewise, REF_PARAM, must be of mode
in out to correctly match the HP Pascal definition of var ref _parm. Also, note that the names for
parameters do not need to match exactly. However, the mode “of access and the data type must be
correctly matched, but there is no compile-time or run-time check that can ensure that they match. It is
your responsibility to ensure their correctness.

When Ada interfaces to HP Pascal, it refers to tho HP Pascal procedure or function by the procedure or
function name. In the above example, the pragma INTERFACE was sufficient to specify that name,
although a pragma INTERFACE_NAME could also have been used (and would be necessary if the name
given to the Ada routine did not map correctly to the desired HP Pascal name). Because Ada uses only the
HP Pascal procedure or function name, there is a difficulty if that name is not unique.

The names of the procedures and functions declared within an HP Pascal module must be unique within a
single module. A given module can only contain one procedure or function name (for example, FOO), but
another module could also contain a procedure or function named FOO. If a single program uses both
modules, it is necessary to properly resolve references to FOO. To properly resolve such references,
procedure and function names in modules are qualified with the name of the module that contains them.
This qualification is internal to the object file and is not accessible to user code. The linker (Id(7)) uses
the qualification information to resolve references by HP Pascal code to identically named procedures or
functions.

B-117

Implementation-Dependent Characteristics

This qualification mechanism poses a difficulty when attempting to interface Ada to HP Pascal because
Ada can only specify the unqualified HP Pascal procedure or function name. There will be no difficulty
if the HP Pascal procedure or function being called has a name that is unique within all the HP Pascal
modules used in the Ada program (if the qualification mechanism is not needed for the name). If the
procedure or function name is not unique, the linker (Id(7)) will, without producing an error or warning,
select one (usually the first one) of the multiple HP Pascal procedures or functions that it encounters
during the link that has the name specified by Ada. As this unpredictable selection is likely to lead to an
incorrect program, interfacing to HP Pascal procedures or functions that are not uniquely named is not
recommended.

For more information on Pascal interfacing, see the HP Pascal Language Reference Manual. Additional
information is available in the HP-UX Portability Guide.

For Pascal, scalar and access parameters of mode in are passed by value; the value of the parameter object
is copied and passed. All other types of in parameters (arrays and records) and parameters of mode out
and in out are passed be reference; the address of the object is passed. This means that, in general, Ada in
parameters correspond to Pascal value parameters, while Pascal var parameters correspond to the Ada
parameters of either mode in out or mode out.

Only scalar types (integer, floating point, character, Boolean, and enumeration types) and access types are
allowed for the result returned by an external interfaced Pascal function subprograms.

For general information about passing parameters to interfaced subprograms, see Section F 11. 1.

F 11.5.1 Scalar Types and HP Pascal Subprograms

See Section F 11.1.1 for details.

F 11.5.1.1 Integer Types and HP Pascal Subprograms

Integer types are compatible between Ada and HP Pascal provided their ranges of values are identical.
Table F-14 shows corresponding integer types in Ada and HP Pascal.

Table F-14. Ada/800 versus HP Pascal Integer Correspondence

Ada HP Pascal Bit Length
predefined type INTEGER predefined type integer 32
predefined type SHORT INTEGER predefined type shortint or 16
user type I116 = 0..65535;
predefined type user-defined type 8
SHORT_SHORT_INTEGER type I8 = 0..255;

B-118

Implementation-Dependent Characteristics

| Note |

In HP Pascal, any integer subrange that has a negative lower bound is
always implemented in 32 bits. Integer subranges with a non-negative
lower bound are implemented in 8-bits if the upper bound is 255 or less, in
16-bits if the upper bound is 65535 or less, and in 32-bits if the upper
bound 1s greater than 65535. Therefore, in Table F~14 above, the
user-defined subrange 0...255 is shown as the HP Pascal equivalent to the
Ada type SHORT_SHORT_INTEGER; however, the Ada type is a signed type
with the range -128..127. To convert the unsigned value back to a signed
value in HP Pascal, if the unsigned value is greater than 127, you will need
to subtract 256 to obtain the actual negative value.

Whether passed from Ada to HP Pascal by value or by reference, the appropriate HP Pascal type, from
Table F-14 above, must be used to properly access the Ada integer value from HP Pascal.

All Ada integer types are allowed for the result returned by an external interfaced subprogram written in
HP Pascal if care is taken with respect to ranges defined for integer quantities.

F 11.5.1.2 Enumeration Types and HP Pascal Subprograms

See Section F 11.1. 1.2 for details.

Ada and HP Pascal have similar implementations of enumeration types. In Ada and HP Pascal,
enumeration types can have a size of 8 16, or 32 bits. However, Ada normally considers enumeration
types to be signed quantities and HP Pascal considers them to be unsigned. Table F-15 shows
corresponding enumeration types in Ada and HP Pascal.

Table F~15 Ada/800 versus HP Pascal Enumeration Correspondence

Ada HP Pascal Bit Length
<= 128 elements <= 256 elements 8
<= 32768 elements <= 65536 elements 16
> 32768 elements > 65536 elements 32

B-119

Implementation-Dependent Characteristics

If the Ada enumeration type has 129 through 256 elements or 32769 through 65536 elements, there are
additional requirement to passing or returning values of such an Ada type. A size specification on a
representation clause for the Ada enumeration type should be used to specify the minimum size for the
enumeration type (see Section F 4.1 for details.) When such a size is used and none of the internal codes
are negative integers, the internal representation of the Ada type will be unsigned and will conform with
the HP Pascal representation.

If such a size specification representation clause is not used, it is still possible to pass a simple variable or
expression of such a type to HP Pascal, by value or reference, or to return one from HP Pascal. Although
the Ada enumeration object is stored in a larger container than HP Pascal expects, the valid values are
actually all stored within the part of the container that HP Pascal will access.

However, unless a size specification representation clause is used, there will be difficulty passing arrays of
Ada enumeration values of such types or passing records containing fields of such types. HP Pascal will
not properly access the correct elements of such arrays or fields of such records because it will assume the
enumeration values to be smaller than they actually are and therefore will compute their location
incorrectly.

If a representation specification is applied to the Ada enumeration type to alter the internal value of any
enumeration elements, care must be taken that the values are within the HP Pascal enumeration type to
which the Ada enumeration value is being passed.

Ada supports the return of a function result that is an enumeration type from an external interfaced
function subprogram written in HP Pascal.

F 11.5.1.3 Boolean Types and HP Pascal Subprograms

See Section F 11.1.1. 3 for details.

F 11.5.1.4 Character Types and HP Pascal Subprograms
See Section F 11.1.1.4 for details.

Values of the Ada predefined character type might be treated as the type CHAR in HP:Pascal external
interfaced subprograms.

F 11.5.1.5 Real Types and HP Pascal Subprograms
The following subsections discuss passing Ada real types to interfaced HP Pascal subprograms.
Fixed Point Types

Ada fixed point types are not supported as parameters or as results of external subprograms. Ada fixed
point types cannot be returned as function results from interfaced subprograms written in HP Pascal.

B-120

Implementation-Dependent Characteristics

Floating Point Types
See Section F 11.1.1. 5 for details.

Ada FLOAT values correspond to HP Pascal real values. Ada LONG_FLOAT values correspond to HP Pascal
longreal values.

F 11.5.2 Access Types and HP Pascal Subprograms

See Section F 11. 1.2 for details.

Ada access values can be treated as pointer values in HP Pascal. The Ada heap allocation and the
HP Pascal heap allocation are completely separate. There must be no explicit deallocation of an
access/pointer object in one language of an object allocated in the other languge.

F 11.5.3 Array Types and HP Pascal Subprograms

See Section F 11. 1. 3 for details.

Arrays with components with the same representation have the same representation in Ada and
HP Pascal.

Arrays cannot be passed by value from Ada to HP Pascal. An Ada array can only be passed to a VAR
parameter in an HP Pascal subprogram.

Array types cannot be returned as function results from external interfaced subprograms written in
HP Pascal.

B-121

Implementation-Dependent Characteristics

F 11.5.4 String Types and HP Pascal Subprograms
See Section F 11.1.3 for details.

Passing variable length strings between Ada and HP Pascal is supported with some restrictions. Strings
cannot be passed by value from Ada to HP Pascal. An Ada string can only be passed to a VAR parameter
in an HP Pascal subprogram.

String types cannot be returned as function results from external HP Pascal subprograms.

Although there is a difference in the implementation of the type STRING in the two languages, with
suitable declarations you can create compatible types to allow the passing of both Ada strings and
HP Pascal strings. An Ada string corresponds essentially to a packed array of characters in Pascal
However, the Ada string type must be one character longer than the corresponding string type in the
HP Pascal procedure or function. HP Pascal adds such an implicit extra byte to its own packed arrays of
characters and expects to be able to utilize this extra byte during some string operations. The following
example illustrates the declaration of compatible types for passing an Ada string between an Ada program
and an HP Pascal subprogram.

HP Pascal subprogram:

(# passing an Ada STRING type to an HP Pascal routine *)
module p;
export
type string80 = packed array [1..80] ot char;
procedure ex1 (var s : string80; len : integer);

impiement
procedure ex1;
begin
... (* update/use the Ada string as a PAC #)
end;
end.

B-122

Implementation-Dependent Characteristics

Ada program:

-- Ada calling HP Pascal procedure with Ada STRING
procedure AP_1 is

-- Define Ada string corresponding to HP Pascal packed array of char
subtype STRING80 is STRING (1..81); -- 80+1 for HP Pascal

-- Ada definition of HP Pascal procedure to be called, with an
-- Ada STRING parameter, passed by reference.
procedure EX1 (S : in out STRING8O;
LEN : INTEGER);
pragma INTERFACE (PASCAL, EX1);
pragma INTERFACE_NAME (EX1, "ex1");

S : STRINGS8O;
begin -- AP_1

S(1..26) := "Ada to HP Pascal Interface";

EX1 (S, 26); -- Call the HP Pascal subprogram
end AP_1;

B-123

Implementation-Dependent Characteristics

An HP Pascal STRING type corresponds to a record in Ada that contains two fields: a 32-bit integer field
containing the string length and an Ada STRING field containing the string value. The following example
illustrates the declaration of compatible types for passing an HP Pascal string between an Ada program
and a Pascal subprogram.

Pascal subprogram:

(# passing an HP Pascal STRING type from Ada to an HP Pascal routine #)
module p;
export
type string80 = string(80];
procedure ex2 (var s : string80);
implement

procedure ex2;

var
str : string80 ;
begin .
--update/use the HP Pascal string
end;
end.

Ada program:

-- Ada calling HP Pascal procedure using a HP Pascal string[80]
procedure AP_2 is

-- Define an Ada record that will correspond exactly
-- with the HP Pascal type: string[80]

type PASCAL_STRING8O is

record
LEN : INTEGER;
S : STRING (1..81); -- 80+1 for HP Pascal

end record;

-- Here we use a record representation clause to
-- force the compiler to layout the record in
-- the correct manner for HP Pascal

for PASCAL_STRING80 use
record
LEN at O range O .. 31;
S at 1 range 0 .. 81#8; -- 80+1 for HP Pascal
end record;

B-124

Implementation-Dependent Characteristics

-- The Ada definition of the HP Pascal procedure to be
-- called, with an HP Pascal STRING parameter, passed
-- by reference.

procedure EX2 (S : in out PASCAL_STRING80);
pragma INTERFACE (PASCAL, EX2);
pragma INTERFACE_NAME (EX2, "ex2");
PS : PASCAL_STRING80;
begin -- AP_2
PS.5(1..26) := "Ada to HP Pascal Interface”; -- assign value field

PS.LEN := 26; ~- set string length field
EX2 (PS); -- call the HP Pascal subprogram

end AP_2;

F 11.5.5 Record Types and HP Pascal Subprograms
See Section F 11. 1.4 for details.

Records cannot be passed by value from Ada to HP Pascal. An Ada record can only be passed to a VAR
parameter in an HP Pascal subprogram.

Record types cannot be returned as function results from external HP Pascal subprograms.

B-125

Implementation-Dependent Characteristics

F 11.6 Summary
Table F-16 shows how various Ada types are passed to subprograms.

Table F-16. Modes for Passing Parameters to Interfaced Subprograms

Ada Type Mode Passed By

ACCESS, in value
SCALAR
~-INTEGER
-ENUMERATION
-BOOLEAN
-CHARACTER
-REAL

ARRAY, in reference
RECORD

all types except TASK and in out reference
FIXED POINT

all types except TASK and out reference
FIXED POINT

TASK N/A not passed
FIXED POINT

B-126

Implementation-Dependent Characteristics

Table F-17 summarizes general information presented in Section F 11.1.

Table F-17. Types Returned as External Function Subprogram Results

Ada Type HP-PA HP C HP FORTRAN HP Pascal
Assembler
INTEGER allowed allowed allowed allowed
ENUMERATION allowed allowed not a.llowedl allowed
CHARACTER allowed allowed not allowed allowed
BOOLEAN allowed allowed allowed allowed
FLOAT allowed allowed2 allowed allowed

FIXED POINT

not allowed

not allowed

not allowed

not allowed

not a.llowedl

ACCESS allowed allowed allowed

ARRAY not allowed not allowed not allowed not allowed
STRING not allowed not allowed not allowed not allowed
RECORD not allowed not allowed not allowed not allowed
TASK not allowed not allowed not allowed not allowed

Notes for Table F-19:

Pass as an integer equivalent.

2 Some restrictions apply to Ada FLOAT types (in passing to HP C subprograms).

B~-127

Table F-18 summarizes information presented in Sections F 11.2 through F 11.5.

Table F-18. Parameter Passing in the Series 800 Implementation

Implementation-Dependent Characteristics

Ada Type HP-PA HPC HP FORTRAN HP Pascal
Assembler
INTEGER allowed allowed allowed allowed
ENUMERATION allowed allowed not allowedl allowed
CHARACTER allowed allowed not za.llowed2 allowed
BOOLEAN allowed allowed not allowedl allowed
FLOAT allowed allowed allowed allowed

FIXED POINT

not allowed

not allowed

not allowed

not allowed

ACCESS allowed allowed not allowed allowed
ARRAY allowed allowed allowed * allowed
STRING allowed allo\ved5 allowed6 not allowed7
RECORD allowed allowed allowed allowed
TASK not allowsd not allowed not allowed not allowed

Notes for Table F~20:

L Can be passed as an equivalent integer value

2 Must be passed as a STRING.

3 Using only arrays of compatible component types.

4 See warning on layout of elements.

3 Special handling of null terminator character is required.

6 Requires that the length also be passed.

7 Ada strings can be passed to a Pascal PAC (Packed Array of Characters)

B-128

Implementation-Dependent Characteristics

F 11.7 Potential Problems Using Interfaced Subprograms

The Ada runtime for the HP 9000 Series 800 computer uses signals in a manner that generally does not
interfere with interfaced subprograms. However, some HP-UX routines are interruptible by signals.
These routines, if called from within interfaced external subprograms, may create problems. You need to
be aware of these potential problems when writing external interfaced subprograms in other languages
that will be called from within an Ada main subprogram. See sigvector(2) in the HP-UX Reference
for a complete explanation of interruptibility of operating system routines.

The following should be taken into consideration:

e SIGALRM is sent when a delay statement is being timed in a tasking program.

SIGVTALRM is sent when round-robin scheduling is used in a tasking program.

Interruptible HP-UX routines (see sigvector(2)) may need to be protected from interruption by the
signals used by the Ada runtime system. The SYSTEM_ENVIRONMENT routines SUSPEND_ADA_ TASKING
and RESUME_ADA_TASKING can be used to implement this protection. As an alternative, the
knowledgeable user can use the sigsetmask(2) or sigblock(2) mechanism to implement the same
protection.

e If a signal is received while it is blocked, one instance of the signal is guaranteed to remain pending and
will be honored when the signal is unblocked. Any additional instances of the signal will be lost.

e Any signals blocked in interfaced code should be unblocked before leaving the interfaced code.

The SIGALRM and SIGVTALRM signals (noted above) are the most likely signals to cause problems with
interfaced subprograms. They are asynchronous signals; that is, they can occur at any time and they are
not caused by the code that is executing at the time they occur. In addition, SIGALRM might unexpectedly
interrupt HP-UX (or other) routines that are sensitive to being interrupted by signals.

Problems can arise if an interfaced subprogram initiates a "slow" operating system function that can be
interrupted by a signal (for example, a read(2) call on a terminal device or a wait(2) call that waits for
a child process to complete). Problems can also arise if an interfaced subprogram can be called by more
than one task and is.not reentrant. If an Ada reserved signal occurs during such an operation or
non-reentrant region, the program may function erroneously.

For example, an Ada program that uses delay statements and tasking constructs causes the generation of
SIGALRM and SIGVTALRM. If an interfaced subprogram needs to perform a potentially interruptible
operating system call, or if it might be called from more than one task and is not reentrant, it can be
protected by blocking SIGALRM and SIGVTALRM around the operating system call or non-reentrant
region. If a SIGALRM or SIGVTALRM signal signifying either the end of a delay period or the need to
reschedule a task is received while it is blocked, the signal is not lost, but rather deferred until it is later
unblocked. The consequence of this signal blocking is that Ada task scheduling or delay statement
execution will be affected for the duration of the signal block.

B-129

Implementation-Dependent Characteristics

Here is an example of a protected read(2) in an interfaced subprogram written in the C language.

#include <sigral.h>
void interface_rout()

{

long mask;

/* Add SIGALRM and SIGVTALRM to list of currently
blocked signals. (see sigblock(2)). »/

mask = sigblock ((1L << (SIGALRM-1)) | (1L << (SIGVTALRM-1)));
read (...) ; /#* or non reentrant region #/
sigsetmask (mask) ; /* return to previous mask #/

}

If any Ada reserved signal other than SIGALRM or SIGVTALRM is to be similarly blocked, SIGALRM and
SIGVTALRM must be either already blocked or blocked at the same time. When any Ada reserved signal
other than SIGALRM or SIGVTALRM is unblocked, SIGALRM and SIGVTALRM must be unblocked at the
same time, or as soon as possible thereafter.

Any Ada reserved signal blocked in interfaced code should be unblocked before leaving that code, or as
soon as possible thereafter, to avoid unnecessarily stalling the Ada runtime executive. Failure to follow
these guidelines will cause improper delay or tasking operation.

An alternative method of protecting interfaced code from signals is described in the Ada User's Guide in
the section on "Execution-Time Topics." The two procedures SUSPEND_ADA_TASKING and
RESUME_ADA_TASKING from the package SYSTEM_ENVIRONMENT supplied by Hewlett-Packard can be
used within an Ada program to surround a critical section of Ada code or a call to external interfaced
subprogram code with a critical section.

F 11.8 Input-Output From Interfaced Subprograms

Using I/0 from interfaced subprograms written in other languages requires caution. Some areas in which
problems can arise are discussed in this section.

F 11.8.1 Files Opened by Ada and Interfaced Subprograms

An interfaced subprogram should not attempt to perform 1/O operations on files opened by Ada. Your
program should not use HP-UX 1/0 utilities intermixed with Ada I/O routines on the same file. If it is

necessary to perform I/O operations in interfaced subprograms using the HP-UX utilities, open and close
those files with HP-UX utilities.

B-130

Implementation-Dependent Characteristics

F 11.8.2 Preconnected I/0 and Interfaced Subprograms

The standard HP-UX files stdin and stdout are preconnected by Ada I/O. If non-blocking interactive
I/0 is used, additional file descriptors will be used for interactive devices connected to stdin or stdout.
Ada does not preconnect stderr, which is used for run-time error messages. An Ada subprogram called
PUT_TO_STANDARD_ERROR is provided in the package SYSTEM_ENVIRONMENT which allows your program
to output a line to the HP-UX stream stderr. For more details on Ada 1/0, see the 4da RM, Section 14
and the section on using the Ada Development System in the Ada User's Manual.

F 11.8.3 Interactive 1/0 and Interfaced Subprograms

The default 1/0 system behavior is NON-BLOCKING for Ada programs with tasking and BLOCKING for
sequential (non-tasking) Ada programs. HP’s implementation of Ada/800 will set non-blocking I/O by
default for interactive files and pipes if the program contains tasks. If the Ada program contains no task
structures (that is, it is a sequential program), blocking 1/0O is set for interactive files and pipes. You can
override the defaults with binder options.

The binder option -W b, -b sets up blocking I/O and the binder option -W b,-B sets up non-blocking
I/0. In non-blocking I/0O, a task (or Ada main program) will not block when attempting interactive
input if data is not available. If the I/O request cannot be immediately satisfied, the Ada runtime will
place the task that requested I/0O on a suspend queue and will awaken the task when the I/O operation is
complete. This arrangement allows other tasks to continue execution; the task requesting I/O will be
suspended until the I/0O operation is completed by the Ada runtime.

B-131

APPENDIX C
TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

SACC_SIZE 32
An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access

type.

$BIG_ID1 (1..254 => 'A’, 255 => '1')
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 (1..254 => A7, 255 => '27)
An identifier the size of the
maximum input line length which
is identical to $BIG ID1 except
for the last character.

SBIG_ID3 (1..127 => A, 128 => '3’,
An identifier the size of the 129..255 => *A’)
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

c-1

TEST PARAMETERS

Name and Meaning

Value

$BIG_ID4
An identifier the size of the
maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT LIT
An integer 1literal of value 298
vith enough leading zerces so
that it is the size of the
maximum line length.

$BIG_REAL LIT
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length,

$BIG_STRING1
A string literal which when
catenated wvith S$BIG_STRING2
yields the image of $BIG_ID1.

$BIG_STRING2

A string literal which when

catenated to the end of
SBIG_STRING1 yields the image of
$BIG_ID1.

SBLANKS
A sequence of blanks twenty
characters 1less than the size

of the maximum line length.

SCOUNT_LAST
A universal
literal wvhose
TEXT_I0.COUNT’ LAST.

value is

SDEFAULT MEM_SIZE
An integer literal whose
is SYSTEH.MEMORY_SIZE.

value

SDEFAULT_STOR_UNIT
An integer literal whose
is SYSTEM.STORAGE UNIT.

value

Cc-2

integer

(1..127 => A7, 128 => ’47,
129..255 => ’A")

(i..252 => 0, 253..255 => "298")

(1..249 => r0’, 250..255 => "69.0E1")

(1 => rmr, 2,.128 => 'A’, 129 => rne)

(1 =>'"r, 2,.128 => ’A’, 129 => '1’,
130 => ")

(1..235 => * 1)

2147483647

2147483647

Name and Meaning

TEST PARAMETERS

Value

SDEFAULT_SYS NAME
The ~ value of the
SYSTEH.SYSTEH_NAHE.

constant

$DELTA_DOC
A real literal whose value is
SYSTEM.FINE_DELTA.

SFIELD_LAST
A universal
literal whose
TEXT_I0.FIELD’LAST.

integer
value is

SFIXED NAME
The name
fixed-point
DURATION.

predefined
other than

of a
type

SFLOAT_NAME
The name of a predefined
floating-point type other than
FLOAT, SHORT_FLOAT, or
LONG_FLOAT.

SGREATER_THAN DURATION
A universal real 1literal that
lies between DURATION’BASE’LAST
and DURATION’LAST or any value
in the range of DURATION.

SGREATER THAN_DURATION BASE LAST
A universal real 1Iteral that is
greater than DURATION’BASE’LAST.

SHIGH_PRIORITY
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGAL_EXTERNAL_FILE_NAHEI
An external file name which

contains invalid characters.

SILLEGAL_EXTERNAL FILE NAME2
An external file name which
is too 1long.

SINTEGER_FIRST
A universal
vhose value

integer 1literal

is INTEGER'FIRST.

HP9000_800

2#1.0%#E-31

255

NO_SUCH_FIXED TYPE

SHORT_SHORT_FLOAT

100000.0

100000000.0

127

not_there//not_there/*"

not_there/not_there/not_there/
././not_there///

-2147483648

c-3

TEST PARAMETERS

Name and Meaning Value
SINTEGER_LAST 2147483647
A universal integer 1literal
vhose value is INTEGER’LAST.
SINTEGER_LAST_PLUS 1 2147483648
A universal integer literal
wvhose value is INTEGER’LAST + 1.
SLESS THAN DURATION -100000.0

A universal real 1literal that
lies between DURATION’BASE’FIRST
and DURATION’FIRST or any value
in the range of DURATION.

$LESS_THAN DURATION BASE FIRST
A universal real literal that is
less than DURATION’BASE’FIRST.

SLOW_PRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN LEN
Maximum input line 1length
permitted by the implementation.

SMAX_INT
A universal integer 1literal
vhose value is SYSTEM.MAX INT.

$MAX_INT_PLUS_1
A universal integer 1literal
vhose value is SYSTEM.MAX INT+1.

$SMAX LEN INT BASED LITERAL
A universal integer based
literal whose value is 2#11%
with enough 1leading zeroes in
the mantissa to be SMAX IN LEN
long.

-100000000.0

31

15

255

2147483647

2147483648

(1..2 => "2:", 3..252 => '0’,
253..255 => "11:")

C-4

Name and “=aning

TEST PARAMETERS

Value

$MAX_LEN REAL BASED LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be $MAX IN LEN long.

SMAX STRING_LITERAL

A string literal of size
SMAX IN LEN, including the quote
characters.

$MIN INT

A universal
vhose value is

integer 1literal
SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

SNAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORT INTEGER,
LONG_FLOAT, or LONG_INTEGER.

SNAME_LIST
A list of enumeration 1literals
in the type SYSTEM.NAME,

separated by commas.

SNEG_BASED_INT
A based integer literal whose
highest order nonzero Dbit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

SNEV_MEM SIZE
An integer literal whose value
is a permitted argument for

pragma MEMORY SIZE, other than
SDEFAULT_MEM SIZE. If there is
no other value, then use

SDEFAULT _MEM_SIZE.

C-5

(1..3 => "16:", 4..251 => '0Q’,
252..255 => "F.E:")

(1 =D I"I,

2..254 => A7, 255 => (")

-2147483648

32

SHORT_SHORT_INTEGER

HP9000_800

16#FFFFFFFD#

1048576

TEST PARAMETERS

Name and Meaning Value

SNEV_STOR_UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT. other than
SDEFAULT STOR UNIT. If there is
no other permitted value, then
use value of SYSTEM. STORAGE_UNIT.

SNEV_SYS NAME HP9000_800
A value of the type SYSTEM.NAME,
other than S$DEFAULT SYS NAME. If
there is only one value of that
type, then use that value.

STASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one ’'IN OUT’
parameter.

STICK 0.01

A real literal whose value is
SYSTEM.TICK.

C-6

APPENDIX D
VITHDRAVN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. B28005C: This test expects that the string "-- TOP OF PAGE. --63" of
line 204 will appear at the top of the listing page due to a pragma
PAGE in line 203; but line 203 contains text that follows the pragma,
and it is this text that must appear at the top of the page.

b. A39005G: This test unreasonably expects a component clause to pack an
array component into a minimum size (line 30).

c. B97102E: This test contains an unintended illegality: a select
statement contains a null statement at the place of a selective wait
alternative (line 31).

d. C97116A: This <test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation may use
interleaved execution in such a way that the evaluation of the guards
at lines 50 & 54 and the execution of task CHANGING OF_THE_GUARD
results in a call to REPORT.FAILED at one of lines 52 or 56.

e. BC3009B: This test wrongly expects that circular instantiations will
be detected in several compilation units even though none of the units
is 1illegal with respect to the units it depends on; by AI-00256, the
illegality need not be detected until execution is attempted (line
95).

f. CD2A62D: This test wrongly requires that an array object’'s size be no

greater than 10 although its subtype’s size was specified to be 40
(line 137).

D-1

VITHDRAWN TESTS

. CD2A63A..D, CD2A66A..D, CD2A73A..D, and CD2A76A..D (16 tests): These

tests wrongly attempt to check the size of objects of a derived type
(for which a ’SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)). Additionally, they use the ’'SIZE length
clause and attribute, whose interpretation is considered problematic
by the WG9 ARG.

. CD2A81G, CD2A8B3G, CD2484M..N, and CD50110 (5 tests): These tests

assume that dependent tasks will terminate while the main program
executes a loop that simply tests for task termination; this is not
the case, and the main program may loop indefinitely (lines 74, 85,
86, 96, and 58, respectively).

. CD2B15C and CD7205C: These tests expect that a ’'STORAGE SIZE length

clause provides precise control over the number of designated objects
in a collection; the Ada standard 13.2:15 allows that such control .
must not be expected.

. CD2D11B: This test gives a SMALL representation clause for a derived

fixed-point type (at line 30) that defines a set of model numbers that
are not necessarily represented in the parent type; by Commentary
AI-00099, all model numbers of a derived fixed-point type must be
representable values of the parent type.

. CD5007B: This test wrongly expects an implicitly declared subprogram

to be at the address that is specified for an unrelated subprogram
(line 303).

ED7004B, ED7005C..D, and ED7006C..D (5 tests): These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
vithdraws these tests as being inappropriate for validation.

CD7105A: This test requires that successive calls to CALENDAR.CLOCK
change by at least SYSTEM.TICK; however, by Commentary AI-00201, it is
only the expected frequency of change that must be at least
SYSTEM.TICK--particular instances of change may be less (line 29).

. CD7203B and CD7204B: These tests use the ’'SIZE length clause and

attribute, whose interpretation is considered problematic by the WG9
ARG.

. CD7205D: This test checks an invalid test objective: it treats the

specification of storage to be reserved for a task’s activation as
though it were like the specification of storage for a collection.

po

VITHDRAVWN TESTS

CE2107I: This test requires that objects of two similar scalar types
be distinguished when read from a file--DATA ERROR is expected to be
raised by an attempt to read one object as of the other type.
However, it is not clear exactly how the Ada standard 14.2.4:4 is to
be interpreted; thus, this test objective is not considered valid
(line 90).

CE3111C: This test requires certain behavior, when two files are
associated with the same external file, that is not required by the
Ada standard.

. CE3301A:° This test contains several calls -to END OF LINE and

END OF PAGE that have no parameter: these calls vere intended to
specify a file, not to refer to STANDARD INPUT (lines 103, 107, 118,
132, and 136).

CE3411B: This test requires that a text file’s column number be set to
COUNT’LAST in order to check that LAYOUT ERROR is raised by a
subsequent PUT operation. But the former operation will generally
raise an exception due to a lack of available disk space, and the test
would thus encumber validation testing.

APPENDIX E
COMPILER OPTIONS AS SUPPLIED BY THE HEWLETT PACKARD COMPANY

Compiler: HP 9000 Series 800 Ada Compiler, Version 4.35
ACVC Version: 1.10

E-1

ADA(1)

NAME

(Requires Optional Ada Software) ADA(1)

ada - Ada compiler

SYNOPSIS

ada { options | (files | libraryname

Remarks:

This command requires mszallanon of optional Ada software (ot included with the standard HP-UX
operating system) before it can be used.

DESCRIPTION
Ada is the HP-UX Ada compiler. It accepts several types of file arguments:

ey
(2)

Q)

4)

Arguments whose names end with .ad?, where 7 is aay single alphanumeric characrer, are
taken to be Ada source files.

The libraryname argument names an Ada library that must have been previously created using
the ada.mkiib(1) command. An Ada library is an HP-UX directory containing files that are
used by the various components of the Ada compilation system. There is no required or stan-
dard suffix on the name of an Ada library.

The named source files are compiled, and each successfully compiled unit is placed in the
specified Ada library by the compiler. When binding, or binding and linking, information is

extracted from the Ada library to perform the bind and/or link opcrauon. The Ada library
muist always be specificd.

To ensure the integrity of the internal data structures of Ada libraries, libraries are locked for
the duration of any operations which are performed on them, During compilation, /ibraryname
is normally locked for updating and other Ada libraries can be locked for reading. During
binding/linking, Ada libraries are oaly locked for reading,

If ada cannot obtain a lock after a suitable number of retries, it displays an informational mes-
sage and (erminates.

Users are strongly discouraged from placu:lg any additional files in Ada library directories.

User files in Ada libraries are subject to da.magc by or might interfere with proper operation
of ada and related tools.

All other file arguments, including those whose names end with .0 or . are passed on to the
linker /d(1) to be linked into the final program. It is oot possible to link-only with the ada(l)
command.

Although shown ip the preferred orde: above, options, files, aud libraryname arguments can
appear ig any order.

Eavironmeat Variables
The cavironment variable ADA_PATH is associated with all componenzs of the Ada compilation sys-
tem. It must be set properly and exported before any component of the Ada compilation system
(including ada) can be used (see ada(l), Environment Variables).
Normally this variable is defined and set in the systemwide shell startup files /etc/profile (for sh(1)
and ksh(1)) and /ete/cshlogin (for csh(l)). However, it can be set by a user cither interactively or
in a personal shell startup file, .profile (for sh(1) and ksh(1)) or <shre (for csa(l)).

ADA_PAT must contain the path name of the directory in which the Ada compiler components
have been instalied.

The value of this varisble must be a rooted directory (i.e. it must begin with a /) and the directory
specification must aot ead with a /.

E-2

Hewlett-Packard Company Sep 1§, 1989

(Requires Optional Ada Software) ADA(1)

ADAQPTS

The eavironment variable ADAOPTS can be used to supply commonly used (or default) arguments

to ada. ADAOPTS is associated directly with ada (it is not used by any other component of the Ada
compilation system).

Arguments can be passed to ada through the ADAOPTS environment variable, as well as on the
command line. Ada(1) picks up the value of ADAQPTS and places its contents before any argu-
ments on the command line. For example (in s4(1) notation),

5 ADAQPTS="v -¢ 10"

$ export ADAOPTS

$ ada -L source.ada testlib
is equivalent to

$ ada -v -¢ 10 -L source.ada test.lib

Compiler Options

The following options are recognized:

a Store the supplied annotation string in the library with the compilation unit, This
string can later be displayed by the unit manager. The maximum [ength of this
«tring is 80 characters, The default is no string,

b Display abbreviated compiler error messages (default is to display the long forms),

< Suppress link phase and, if binding occurred, preserve the object file produced by
the binder. This option only takes effect if linking would normaily occur. Linking
normally occurs when binding has been requested.

Use of this option causes an informational message (o be displayed on standard
error indicating the format of the /d(1) command that sbould be used to link the
program. It is recommended that the user supply additional object (.0) and archive
(.a) files and additional library search paths (-lc) only in the places specified by the
infcrmational message.

If the -c option is given along with the -d or -D option, the binder must assume the
name for the executable file, in order to determine what to name the debug infor-
mation file (see -d and -D). If the -0 option is not given, the debug information file
will be named a.out.cui, and the user must ensure that the executable is named
aout. If a -0 outfile option is given, the debug information file will be named
outfile.cui, and the user must ensure that the executable is named outfile. If the
executable is not named as expected, ada.probe(1) will not work properly.

When /4 is later used to actually [ink the program, the following conditions must be
met:

1 The .o file gencrated by the binder must be specified before apy HP-UX
archive is specified (either explicitly or with .1).

2. If ¢ is specified when linking, any .0 file containing code that uses
stdio(3S) routines must be specified before -Ic is specified

-d Cause the compiler to store additional information in the Ada library for the units
being compiled for use by the Ada debugger (see ada.probe(l)). Only information

required for debugging is saved: the source is not saved (see -D.) By default,
debut information is sot stored.

Cause the binder to produce a decug wformation file for the program being bouad
so that the resulting program can oe mampulated by the Ada debugger. The debug

E-3

Hewlett-Packard Company Sep 15, 1989

ADA(1)

£ <nann>

+n <nnn>

-0

-0 outfile

.q

- <ann>

Hewlett-Packard Company

(Requires Optional Ada Software) ADA(1)

information file name will be the executable program file name with .cul appended.
If the debug information file name would be truncated by the file system on which
it would be created, an error will be reported.

Only sources compiled with the -d or D option contribute information to the
debug informatioa file produced by the binder.

Stop compilation after <ann> errors '(legal range 0.32767, default 50).

Cause any pending or existing instantiations of generic bodies in this Ada library,
whose actual generic bodics have been compiled or recompiled in another Ada
library, to be compiled (or recompiled) in this Ada library.

This option is treated as a special “source” file and the compilation is performed
when the option is ¢ncountered among the names of any actual source files.

Any pending or existing instantiations in the same Ada bbrary into which the actual
generic body is compiled (or recompiled), do not need this option. Such pending
or existing instantiations are automatically compiled (or recompiled) whea the
actual generic body is compiled into the same Ada library.

Warning: Compilation (or recompilation) of instantiations either automatically or
by using this option only affects instantiations stored as separate units in the Ada
library (see -u). Existing instantiations whick are "inline” in another unit are not
automatically compiled or recompiled by using this option. Units containing such
instantiations must be explicitly recompiled by the user if the actual generic body is
recompiled.

Cause the compiler to save an internal representation of the source in the Ada

library for use by the Ada cross refereacer adaref(1). By default, the internal
represeatation iy not saved.

Cause the linker to search the HP-UX library named either /lib/libx.a (tried first)
or /usr/lib/libx.a (see /d(1)).

The supplied number is the size in Kbytes to be allocated at compile time to mani--
pulate library information. The range is 500 to 32767. The default is 500. The
default size should work in almost all cases. In some extreme cases involving very
large programs, increasing this value will improve compilation time. Also, if the
value is to small, STORAGE_ERROR can be raised.

Cause the output file from the linker to be marked as shareable (see -N). For
details refer to chatr(1) and /d(1).

Name the output file from the linker outfile instead of a.out. In addition, if used
with the - option, name the object file output by the binder ousfile.o instead of
a.out.o. If debugging is enabled (with -d or «D), name the debug information file
output by the binder ousfile.cut instead of a.out.cul.

The object file output by the binder is deleted if « is not specified.

Cause the output file from the linker to be marked as demand loadable (sse¢ -Q).
For details refer to charr(1) and ld(1).

Set listing line length (0 <ann> (legal range 60.253, default 79). This option
applies to the listing produced by bcth the compiler and the binder (see -B, -L and
W b,-L).

Cause the output of the linker to be siripped of symbol table information (see /d(1)
and smip(1)).

E-4

Sep 15. 1989

ADA(1)

«t ¢,name

-y

-B

D

(Requires Optional Ada Software) ADA(1)

Substitute or insert subprocess ¢ with name where ¢ is one or more of a set of
identiflers indicating the subprocess(es). This optioa works in two modes: 1) if ¢ is
a sxngle identifier, nome represents the full path name of the new subprocess; 2) if
¢ is a set of (more than one) identifiers, name represents a prefix to which the

standard suffixes are concatenated to construct the full path name of the new sub-
processes.

The possible values of ¢ are the following:

b Dbinder body (standard suffix is adabind)

¢ compiler body (standard suffix is adacomp)
0 samcasc

I linker (standard suffix is /d)

Cause instantiations of geaeric program unit bodies to be stcred as separate units
in the Ada library (see).

If -u is not specified, and the actual generic body has already beea compiled when
an instantiation of the body is compiled, the body generated by the instantiation is
stored "inline" in the same unit a4 its declaration.

If -u is specified, or the actual generic body bas not already been compiled when an

instantiation of the body is compiled, the body generated by the instantiation is
stored as a separate unit in the Ada library.

The -u option may be needed if a large number of geaeric instantiations within a
given unit result in the overflow of a compiler internal table.

Specifying -u reduccs the amount of table space aceded, permitting the compiler to
complete. However it also iucreases the number of units used within the Ada
library, as well as introduces a small amount of overhead at execution time, in units
which instantiate generics,

Enable verbose mode, producing a step-by-step description of the compilation,
binding, and linking process on standard error.

Suppress warning messages.

Perform syntactic checking only. The /braryname argument must be supplied,
although the Ada library is not modified.

Causes the compiler to produce a compilation listing, suppressing page headers and
the error summary at the end of the compilation listing. This is useful when com-
paring a compilation listing with a2 previous compilation listing of the same pro-
gram, without the page headers causing mismarches. This option can not be speci-
fied in conjunction the -L option,

Only generate checks for stack overflow. Use of this option may resuit in errone-
ous (in the Ada sense) program behavior. [n addition, some checks (such as those

automatically provided by hardware) might not be suppressed. See the Users
Guide for more information.

Cause the compiler to store additional information in the Ada library for the units
being compiled, for use by the Ada debugger (sce ada.probe(1)). In addition to
saving information required for debugging, an internal represeatation of the actual
source is saved. This permits accurate source level debugging at the expease of a
larger Ada library if the actual source file changes after it is compiled. (iee «d.)
By default, neither debug information aur source information is stored.

E-5

Hewlett-Packard Company Sep 15, 1989

ADA(1)

M <main>

N

-0

P <nnn>

S

(Requires Oprional Ads Software) ' ADA(1)

Cause the binder to produce a debug information file for the program being bound
s0 that the resulting program can be manipulated by the Ada debugger. The debug
information file name is the executable program file name with .cul appended. If
the debug information file name would be truncated by the file system on which it
would be created, an error will be reported.

Only sources compiled with the -d or -D option contribute information to the
debug information file produced by the binder

Generate code but do not update the library. This is primarily intended to allow
one to get an assembly listing (with -S) without changing the library. The /idrar-
yname argument must be supplied, aithough the Ada library is not modified.

Suppress all inlining. No procedures or functions are expanded inline and pragma
inline is ignored. This also preveats units compiled in the furure (without this
option in effect) from inlining any units compiled with this option in effect.

Write a program listing with esror diagnostics to standard output, This option can
not be specified in conjunctiod with the -B option.

Invoke the binder after all source files named in the command line (if any) have
been successfully compiled. The argument <main> specifics the eatry point of

the Ada program; <main> must be the name of a parameterless Ada library level
procedure.

The library level procedure <main> must have been successfully compiled into
(or linked into) the named Ada library, either by this invocation of ada or by a pre-
vious invocation of ada (or ada.umgr(UTIL)).

The binder produces an object file named a.out.o (unless -0 is used to specify an
alternate name), only if the option -¢ is also specified. The object file produced by
the binder is deleted uniess the aption < is specified. Note that the alternste name
is truncated, if necessary, prior to appending .0.

Cause the output Sle from the linker to be marked as unshareable (see -n). For
derails refer to charr(1) and ld(1). :

Tavoke the optimizer with full optimizations. See the description of +OQ under the
DEPENDENCIES section for more information.

Set listing page length to <nnn> lines (legal range 10.32767 or O to indicate no
page breaks, default 66). This length is the total aumber of lines listed per listing
page. It includes the heading, header and trailer blank lines, listed program lines,

and error message lines. This option applies to the listing produced by both che
compiler and the binder (see -L and -WV b,.L).

Cause the output file from the linker to'be marked as not demand loadable (see
«q). For details refer to charr(1) and ld(1).

Suppress all runtime checks, However, some checks (such as those automatically
provided by hardware) might not be suppressed. Use of this option may result in
erroneous (in the Ada sense) program behavior.

Write an assembly listing of the code gencrated to standard output. This outpus is
not in a form suitable for processing with as(1).

W carglf argl,..argN]

Cause argl through argN to be handed off to subprocess ¢c. The argi are of the
form -argoprion{,argvaiue], where argoprion is the same of an option recognized by
the subprocess and argvaiue 18 a separate argument o argoption where scccssary.

E~6

Hewlett-Packard Company Sep 15, 1989

ADA(1)

-X

Bin.der Options

{ Requires Optional Ada Software) ADA(1)

The values that ¢ can assume are those listed under the -t option as well as
(driver program).

For example, the specification to pass the «r (preserve relocation mformauou)
option to the linker would be:

Wler

For exampie, the following:

W b,sm,10,.5,2

sends the options -m 10 -3 2 to the binder. Note that all the binder options can be
supplied with one «W, (more than one -W can also be used) and that any embed-

ded spaces must be replaced with commas. Note that «W b is the only way to
specify binder options.

The -W d option spedification allows additional implementation-specific options to
be recognized and passed through the compiler driver to the appropriate subpro-
¢ess, For example,

W d,:0,e0

sends the option -Q eo to the driver, which sends it to the compiler so thac the e
and o optimizations are performed. Furthermore, a shorthand notation for this
mechanism can be used by prepending the option with +; as follows:

+0eo

This is equivaleat to -W d,-O,e0. Note that for simplicity this shorthand is applied
to each implementation-specific option individually, and that the argvalue (if any) is
separated from the shorthand argoprion with white space instead of a comma.

Perform syntactic and semantic checking. The libranymame argument must be sup-
plied, although the Ada library is not modified.

The following options can be passed to the binder using -W b,...:

’w bg'b
W b,k

W bem, <nnn>

W b,es,<nnn>

Wb, 4, <nnn>

At execution time, interactive input blocks if data is ot available. All tasks are
suspended if input data is not available. This option is the default if the program
contains o tasks (see -W b,-B).

Keep uncalled subprograms when binding. The default is to remove them.

Ada/300:; Set the inirial program stack size to <ann> units of 1024 bytes (legal
range 1.32767, default 10 units = 10 * 1024 bytes = 10240 bytes).

Ada/800: Set the maximum stack limit of the program stack to <nnn> units of
1024 bytes (legal range 512..32767, defaults to a system-defined limit).

Cause round-robin scheduling to be used for tasking programs. Set the time slice
to <ann> teas of milliseconds (legal range 1.32767 or { to turn off time slicing).
By default, round-robin scheduling is enabled with a time slice of 1 sccond
(<ann> = 100),

Ada/300: The time slice granularity is 20 milliseconds (<ran> = 2),
Ada/800; The time slice granulariry is 10 milliseconds (<ann> = 1),
Set task stack size of created tasks to <ann> units of 1024 bytes.

Set the initial (and maximum) task stack size (legal range 1..32767, default 8 units
a 8 * 1024 bytes = 8192 bytes),

E-7

Hewlett-Packard Company Sep 18, 19589

" ADA(1)

(Requires Optionsl Ada Software) ADA(1)
-Wh,.w Suppress warning messages.
‘W b,x Perform consistency checks without producing an object file and suppress linking.

The W b,-L option can be used to obtain binder listing information when this
option is specified (see -W b,-L below),

W b,-B . Al execution time, interactive input does not block if data is not available. Oaly
the task(s) doing interactive input are suspendcd if input data is not availablz. This
option is the default is the program contains tasks (se¢ «W byeb).

‘W b,.L Write a binder listing with warning/error diagnostics to standard error.
‘W b,.T Suppress procedure traceback in response to runtime errors and unhandled excep-
tions.
Locks

To ensure the integrity of their internal data structures, Ada libraries and families are locked for the
duration of operations that are performed on them. Normally Ada families are locked for only a
short time when libraries within them are manipulated. However, multiple Ada libraries might need
to be locked for longer periods during a single operation. If more than one library is locked, ade
places ap exclusive lock on ome library, so it can be updated, and a shared lock on the other(s), so
that they can remain open for read-only purposes.

An Ada family or library locked for updating cannot be accessed in any way by any part of the Ada
compilation system except by the part that holds the lock. An Ada family or library locked for read-

ing can be accessed by any part of the Ada compilation system desiring to read from the Ada family
or library.

If ada cannot obtain a lock after a suitable aumber of retries, it displays an informational message
and terminates.

Under some circumstances, an Ada family or Ada library might be locked, but the locking
program(s) might have terminated (for example, due to system crash or getwork failure). If you

determine that the Ada family or Ada library is locked but should not be locked, you may remove
the lock.

Use ada.unicek(1) to unlock an Ada library and ada.funlock(1) to unlock an Ada family. However,
unlocking should be done with care. If an Ada family or Ada library is actually locked by a tool,

unlocking it will permit access by other tools that nnght find the contents invalid or that might dam-
age the Ada family or Ada library. :

DIAGNOSTICS

Hewlett-

The diagnostics produced by eda are intended to be self-explanatory. Qccasional messages might be
produced by the linker.

If a program listing (-B or -L) and/or gencrated code listing (-S) is requested from the compiler, this
listing as well as compiler error messages are written to standard output.

If neither a program listing nor a generated code listing is requested from the compnlcr, erroneous
source lines and compiler error messages are written to standard error.

If a binder listing is requested from the binder (with -W bL), the binder listing as well as biader
error messages are written to standard error.

If a binder listing is not requested from the binder, binder error messages are written {0 standard
ecror.

Errors detected during command line processing or duning scheduling of the compiler, binder, or
linker, are writtea to standard error. If any compiler. bicder, or linker errors occur, ada writes a
one-line summary to standard error immediately before ‘erminating.

E-8

Packard Company Sep 15, 1589

ADAQ1)

WARNINGS

(Requires Optional Ada Software) ADA(1)

Options not recognized by ada are uot passed on to the linker. The optiop -W Larg can be used to
pass such optioas to the linker.

Ada does not geuerate an error or warning if both optimization and debugging are requested. How-
ever, ada.probe is only capable of limited debugging of optimized code, Certain adz.probe com-
mands may give misleading or unexpected results. For example, object values may be stored in
registers; therefore the value displayed from memory may be incorrect. For this reason, the ability
to examine or modify objects and expressions may be impaired. Dead code elimination or code
motion may affect single step execution or prevent breakpoints from being set on specific source

fines,
DEPENDENCIES
Series 300

The binder option «W b,-T also causes traceback tables to be excluded from final executable

file.

The following options are specific to the Series 300:

+0 what

+h <iype>

+1 <ype>

Hewicu-Packard Coropany

Selectively invoke optimizations. The what argument must be specified, and
indicates which optimizations should be performed. Note that the option -O
is equivaleat to +O eloE.

The what argument can be a combination of the letters e, 1, o, p, E, and P..
Either ¢ or p, but not both, can be specified. Similarly, either E or P, but not
both, can be specified. All other combinations are permitted; however, at
most oue of each letter can be specified.

e Same as p (below).

{ Permit procedures and functions not declared with pragma Inline to be
expanded inline at the compiler’s discretion. Oaly procedures and func-
tions in the current source file are considered.

Procedures and functions declared with pragma Inline are always con-
sidered candidates for inline expansion uniess of is specificd; this optim-
ization only causes additional procedures and functions to be coam-
sidered. .

Peephole optimizations are performed on the final object code.

p Optimizations are performed to remove unnecessary checks, optimize
loops, and remove dead code.

E Same as P (below).

P Optimizations are performed on common subexpressions and register
allocation,

Bind/link the program to usc the specified <qpe> of hardware floating
point assist for user code floating point operations (see +H). The two
<type>'s currently supported are 68881 (the 68881 math coprocessor) and
68882 (the 68882 math coprocessor). The code generated is the same for
either <fype>. This is the default if the host system provides a 68881 or a
68882 coprocessor.

Compile the program to inline the specified <ype> of hardware floating
point assist for user code fcaung point operations (see +I). The two
<type>’s currently suppartad e 48881 (the 68881 math coprocessor) and

E-9

Sep 15, 1989

ADA(1)

+H

+1

(Requires Optional Ada Software) ADA(})

68882 (the 68882 math coprocessor). The code generated is the same for

either <fype>. This is the default if the bost system provides a 68881 or a
68882 coprocessor.

Bind/link the program to use software floating point routines for user code
floating point operations (see +h), This is the default if the host system does
not provide a 68881 or 68882 coprocessor.

Compdc the program to make calls to a math library for user code ﬂoanng
point operations (see +1). The +h optlon is then used at bind/link time to
specify whether hardware or software is used for floating point operations.

This is the default if the host system does not provide a 68881 or 63882
coprocessor.

Unlike other Series 300 compilers, it is not possible to link-only using the ada(l) command. If
s.parate linking is desired, use the /d(1) command.

A successful bind produces a (non-exccutable) .o file. The .0 ﬁle is normally u.leted unless the

compiler option «¢ is specified.
Series 800
The binder option -W b,-T also causes traceback tables to be excluded from final execut-
able file.
The following options are specific to the Series 800:
+0 what Selectively invoke optimizations. The what argument must be specified,
and indicates which optimizations should be performed. Note that the
option «0 is equivalent to +O el1E.

The what argument can be a combination of the letters ¢, 1, 1, p, E, and

P.. Either ¢ or p, but not both, can be specified. Similarly, either E or

P, but not both, can be specified. All other combinations are permit-

ted; however, at most one of each letter can be specified.

e Same as p (below).

t Permit procedures and funmons not declared with pragma mline
to be expanded inline at the compiler's discretion. Only pro-
cedures and functions in the curreat source file are considered.
Procedures and functions declared with pragma in'‘ne are always
considered candidates for iniine expansion unless ol is specified;
this optimization only causes additional procedures and functions
to be considered.

The code generator performs level 1 optimizations.

p Optimizations are performed to remove unmecessary checks,
optimize loops, and remove dead code.

E Same as P (below).

P Optimizations are performed onm common subexpressions and
register allocation.

+T

Hewlert-Packard Company

Suppress the generation of traceback information at compile time. In
addition to suppressing traceback at run time, this also reduces the size
of the object file ia the ada library.

£-10

Sep 15, 1989

ADA(D)

(Requires Optional Ads Software) ADA(1)

Unlike other Series 800 compilers, it is not possible to link-only using the ada(l) com-
mand. If separate linking is desired, use tae /d(1) command.

A successful bind produces a (mon-executable) .0 file. The .0 file is normally deleted

AUTHOR

unless the compiler option ¢ is specified.

Ada was developed by HP and Alsys.

FILES
file.ad?
libraryname

file.o

acut

file.cui
SADA_PATH/ada
SADA_PATH/adacomp
$ADA_PATH /adabind

input file (Ada source file).

user Ada library (created using ada.mkiib(1)) in which compiled units
are placed by a successful compilation and from which the binder
extracts the units necéssary to build a relocatable file for /d(1). Tem-
porary files generated by the compiler are also created in this directory
and are automatically deleted on successful completion. Users are
strongly discouraged from placing any additional files in Ada library
directories. User files in Ada libraries are subject.to damage by or may
interfere with proper operation of ada and related tools.
binder-generated object file or user-specified object fiie refocated at link
time.

linked exacutable output file.

binder.generated debug information file.

Ada compilation control program.

Ada compiler.

Ada binder.

SADA_PA™'H/ada_eaviron Ada environment description file.

SAD.. _PATH/adaargu
SADA_PATH /alternate
SADA_PATH /installation
SADA_PATH/public
SADA_PATH /err_tpl
SADA_PATH/predeflib
SADA _PATH/libada020.a
SADA _PATH/libada881.a
/libserid.o

/lib/iibe.a

/lib/libm.a

SEE ALSO

Ada argument formatter,

Ada predefined library (sequential version).
Ada instailation family,

Ada publie family.

Ada compiler/binder error message files.
Ada predefined library, tasking version.
Ada run-time HP-UX library (MC68020).
Ada run-time HP-UX library (MC68881).
C run-time startup.

HP-UX C library.

HP.UX math library

adafmgr(1), adaformat(l), adafuniock(l), adalmgr(1), adalsfam(l), adalslib(1), ada.r.ake(1),
ada.mkfam(1), ada.mklib(1), ada.mvfam(1), ada.mviib(1), ada.probe(1), ada.proect{1), ada.rmfam(l),
ada.rmlib(1), ada.umgr(1), ada.ualock(1), ada.xref(1),

Ada User's Guiae,
Ada Tools Manual,

Reference Manual for the Ada Programming Language (ANSI/MIL-STD-1815A),

Reference Manual for the Ada Prograrmming Language, Appeadix F (Scries 300). Reference Manual
for the .4da Programming Language, Appendix F (Series 800).

EXTERNAL INFLUENCES

International Code Set Support .
Singie.byte character code sets are supported within file names.

Hewiett-Packard Company

Sep 15, 1989

